Coupled VO2 Oscillators Circuit as Analog First Layer Fi Networks

Frontiers in Neuroscience 15, 628254

DOI: 10.3389/fnins.2021.628254

Citation Report

#	Article	IF	CITATIONS
1	How Frequency Injection Locking Can Train Oscillatory Neural Networks to Compute in Phase. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 1996-2009.	7.2	21
2	Oscillatory Neural Networks Using VO2 Based Phase Encoded Logic. Frontiers in Neuroscience, 2021, 15, 655823.	1.4	15
3	Frequency Injection Locking-Controlled Oscillations for Synchronized Operations in VO2 Crossbar Devices., 2021,,.		0
4	Hardware Implementation of Differential Oscillatory Neural Networks Using VO 2-Based Oscillators and Memristor-Bridge Circuits. Frontiers in Neuroscience, 2021, 15, 674567.	1.4	20
5	Oscillatory Neural Networks for Edge Al Computing. , 2021, , .		12
6	Mapping Hebbian Learning Rules to Coupling Resistances for Oscillatory Neural Networks. Frontiers in Neuroscience, 2021, 15, 694549.	1.4	26
7	Advanced Design Methods From Materials and Devices to Circuits for Brain-Inspired Oscillatory Neural Networks for Edge Computing. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021, 11, 586-596.	2.7	9
8	Switching Dynamics in Vanadium Dioxide-Based Stochastic Thermal Neurons. IEEE Transactions on Electron Devices, 2022, 69, 3135-3141.	1.6	5
9	Oscillatory Neural Network as Hetero-Associative Memory for Image Edge Detection. , 2022, , .		4
10	Design and Applications of Integrated Transducers in Commercial CMOS Technology. Frontiers in Mechanical Engineering, 0, 8, .	0.8	2
11	Electro-thermal simulations of beyond-CMOS vanadium dioxide devices and oscillators. MRS Communications, $0, , .$	0.8	3
12	Integrated acoustic resonators in commercial fin field-effect transistor technology. Nature Electronics, 2022, 5, 611-619.	13.1	6
13	Role of ambient temperature in modulation of behavior of vanadium dioxide volatile memristors and oscillators for neuromorphic applications. Scientific Reports, 2022, 12, .	1.6	5
14	Influence of germanium substitution on the structural and electronic stability of the competing vanadium dioxide phases. Physical Review Research, 2022, 4, .	1.3	1
15	Physical Origin of Negative Differential Resistance in V ₃ O ₅ and Its Application as a Solidâ€5tate Oscillator. Advanced Materials, 2023, 35, .	11.1	9
16	The Coupled Reactance-Less Memristor Based Relaxation Oscillators for Binary Oscillator Networks. Micromachines, 2023, 14, 365.	1.4	2
17	Selective area doping for Mott neuromorphic electronics. Science Advances, 2023, 9, .	4.7	11
19	DC Characterization of Numerically Efficient and Stable Locally Active Device Models. , 2023, , .		1

#	Article	IF	CITATIONS
20	Two-Layered Oscillatory Neural Networks with Analog Feedforward Majority Gate for Image Edge Detection Application. , 2023, , .		1
24	BEOL-compatible 4F ² Single Crystalline Semiconductor Oscillator for Low-power and Large-scale Oscillatory Neural Network Hardware., 2023,,.		0