Boosting Zinc Electrode Reversibility in Aqueous Electr Antisolvents

Angewandte Chemie - International Edition 60, 7366-7375 DOI: 10.1002/anie.202016531

Citation Report

#	Article	IF	CITATIONS
1	All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energy and Environmental Science, 2021, 14, 2577-2619.	15.6	201
2	Undesired Reactions in Aqueous Rechargeable Zinc Ion Batteries. ACS Energy Letters, 2021, 6, 1773-1785.	8.8	173
3	Designing Electrolyte Structure to Suppress Hydrogen Evolution Reaction in Aqueous Batteries. ACS Energy Letters, 2021, 6, 2174-2180.	8.8	126
4	In Situ Carbon Insertion in Laminated Molybdenum Dioxide by Interlayer Engineering Toward Ultrastable "Rockingâ€Chair―Zincâ€ion Batteries. Advanced Functional Materials, 2021, 31, 2102827.	7.8	64
5	Ultraâ€Fast and Scalable Saline Immersion Strategy Enabling Uniform Zn Nucleation and Deposition for Highâ€Performance Znâ€lon Batteries. Small, 2021, 17, e2101901.	5.2	65
6	Simultaneous Regulation on Solvation Shell and Electrode Interface for Dendriteâ€Free Zn Ion Batteries Achieved by a Lowâ€Cost Glucose Additive. Angewandte Chemie - International Edition, 2021, 60, 18247-18255.	7.2	529
7	Tuning the Electrolyte Solvation Structure to Suppress Cathode Dissolution, Water Reactivity, and Zn Dendrite Growth in Zincâ€lon Batteries. Advanced Functional Materials, 2021, 31, 2104281.	7.8	225
8	Simultaneous Regulation on Solvation Shell and Electrode Interface for Dendriteâ€Free Zn Ion Batteries Achieved by a Low ost Glucose Additive. Angewandte Chemie, 2021, 133, 18395-18403.	1.6	97
9	ZnSe Modified Zinc Metal Anodes: Toward Enhanced Zincophilicity and Ionic Diffusion. Small, 2021, 17, e2101728.	5.2	82
10	Cyclic Ether–Water Hybrid Electrolyte-Guided Dendrite-Free Lamellar Zinc Deposition by Tuning the Solvation Structure for High-Performance Aqueous Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 40638-40647.	4.0	40
11	Fundamental Understanding and Effect of Anionic Chemistry in Zinc Batteries. Energy and Environmental Materials, 2022, 5, 186-200.	7.3	18
12	Dualâ€Function Electrolyte Additive for Highly Reversible Zn Anode. Advanced Energy Materials, 2021, 11, 2102010.	10.2	246
13	Reducing Water Activity by Zeolite Molecular Sieve Membrane for Longâ€Life Rechargeable Zinc Battery. Advanced Materials, 2021, 33, e2102415.	11.1	164
14	Studying the Conversion Mechanism to Broaden Cathode Options in Aqueous Zincâ€lon Batteries. Angewandte Chemie, 2021, 133, 25318-25325.	1.6	34
15	Stabilization of Zn Metal Anode through Surface Reconstruction of a Ceriumâ€Based Conversion Film. Advanced Functional Materials, 2021, 31, 2103227.	7.8	97
16	Designing Anionâ€Type Waterâ€Free Zn ²⁺ Solvation Structure for Robust Zn Metal Anode. Angewandte Chemie - International Edition, 2021, 60, 23357-23364.	7.2	179
17	Studying the Conversion Mechanism to Broaden Cathode Options in Aqueous Zincâ€lon Batteries. Angewandte Chemie - International Edition, 2021, 60, 25114-25121.	7.2	84
18	A review of zinc-based battery from alkaline to acid. Materials Today Advances, 2021, 11, 100149.	2.5	64

#	Article	IF	CITATIONS
19	Immunizing Aqueous Zn Batteries against Dendrite Formation and Side Reactions at Various Temperatures via Electrolyte Additives. Small, 2021, 17, e2103195.	5.2	172
20	<i>N</i> , <i>N</i> -Dimethylacetamide-Diluted Nitrate Electrolyte for Aqueous Zn//LiMn ₂ O ₄ Hybrid Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 46634-46643.	4.0	14
21	Designing Anionâ€Type Waterâ€Free Zn ²⁺ Solvation Structure for Robust Zn Metal Anode. Angewandte Chemie, 2021, 133, 23545-23552.	1.6	57
22	Structural insights into the dynamic and controlled multiphase evolution of layered-spinel heterostructured sodium oxide cathode. Cell Reports Physical Science, 2021, 2, 100547.	2.8	23
23	Stabilizing Zinc Electrodes with a Vanillin Additive in Mild Aqueous Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 47650-47658.	4.0	70
24	Pizza-like heterostructured Ti3C2T /Bi2S3@N-C with ultra-high specific capacitance as a potential electrode material for aqueous zinc-ion hybrid supercapacitors. Journal of Alloys and Compounds, 2021, 883, 160881.	2.8	20
25	Challenges and design strategies for high performance aqueous zinc ion batteries. Energy Storage Materials, 2021, 42, 533-569.	9.5	74
26	Aqueous rechargeable zinc batteries: Challenges and opportunities. Current Opinion in Electrochemistry, 2021, 30, 100801.	2.5	14
27	Engineering interfacial layers to enable Zn metal anodes for aqueous zinc-ion batteries. Energy Storage Materials, 2021, 43, 317-336.	9.5	154
28	Functionalized carbon nanofiber interlayer towards dendrite-free, Zn-ion batteries. Chemical Engineering Journal, 2021, 425, 131862.	6.6	53
29	Improving zinc anode reversibility by hydrogen bond in hybrid aqueous electrolyte. Chemical Engineering Journal, 2022, 427, 131705.	6.6	61
30	Non-concentrated aqueous electrolytes with organic solvent additives for stable zinc batteries. Chemical Science, 2021, 12, 5843-5852.	3.7	273
31	Wide Voltage Aqueous Asymmetric Supercapacitors: Advances, Strategies, and Challenges. Advanced Functional Materials, 2022, 32, 2108107.	7.8	90
32	Electrochemically Activated Cu _{2–} <i>_x</i> Te as an Ultraflat Discharge Plateau, Low Reaction Potential, and Stable Anode Material for Aqueous Zn″on Half and Full Batteries. Advanced Energy Materials, 2021, 11, 2102607.	10.2	37
33	Synergistic Effect of Cation and Anion for Low-Temperature Aqueous Zinc-Ion Battery. Nano-Micro Letters, 2021, 13, 204.	14.4	67
34	Building Ohmic Contact Interfaces toward Ultrastable Zn Metal Anodes. Advanced Science, 2021, 8, e2102612.	5.6	87
35	Fireâ€Retardant, Stableâ€Cycling and Highâ€Safety Sodium Ion Battery. Angewandte Chemie, 2021, 133, 27292-27300.	1.6	17
36	Fireâ€Retardant, Stable ycling and Highâ€Safety Sodium Ion Battery. Angewandte Chemie - International Edition, 2021, 60, 27086-27094.	7.2	63

#	Article	IF	CITATIONS
37	Engineering zincophilic sites on Zn surface via plant extract additives for dendrite-free Zn anode. Energy Storage Materials, 2022, 44, 408-415.	9.5	95
38	A Highly Reversible Zinc Anode for Rechargeable Aqueous Batteries. ACS Applied Materials & Interfaces, 2021, 13, 52659-52669.	4.0	31
39	Cotton-derived cellulose film as a dendrite-inhibiting separator to stabilize the zinc metal anode of aqueous zinc ion batteries. Energy Storage Materials, 2022, 44, 57-65.	9.5	211
40	Hollow NiCoP nanocubes derived from a Prussian blue analogue self-template for high-performance supercapacitors. Journal of Alloys and Compounds, 2022, 893, 162344.	2.8	37
41	Achieving both high reversible and stable Zn anode by a practical glucose electrolyte additive toward high-performance Zn-ion batteries. Rare Metals, 2022, 41, 356-360.	3.6	67
42	Uniform distribution of zinc ions achieved by functional supramolecules for stable zinc metal anode with long cycling lifespan. Energy Storage Materials, 2022, 45, 1074-1083.	9.5	57
43	Graphene quantum dots enable dendrite-free zinc ion battery. Nano Energy, 2022, 92, 106752.	8.2	98
44	Advances and strategies in electrolyte regulation for aqueous zinc-based batteries. Coordination Chemistry Reviews, 2022, 452, 214299.	9.5	46
45	Progress and prospect of low-temperature zinc metal batteries. , 2022, 1, 100011.		107
46	Stabilizing Interface pH by Nâ€Modified Graphdiyne for Dendriteâ€Free and Highâ€Rate Aqueous Znâ€lon Batteries. Angewandte Chemie, 2022, 134, .	1.6	24
47	Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nature Communications, 2021, 12, 6606.	5.8	369
48	Stabilizing Interface pH by Nâ€Modified Graphdiyne for Dendriteâ€Free and Highâ€Rate Aqueous Znâ€lon Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	124
49	Hexaoxacyclooctadecane induced interfacial engineering to achieve dendrite-free Zn ion batteries. Energy Storage Materials, 2022, 46, 605-612.	9.5	51
50	A non-flammable hydrous organic electrolyte for sustainable zinc batteries. Nature Sustainability, 2022, 5, 205-213.	11.5	277
51	Interfacial Engineering Strategy for High-Performance Zn Metal Anodes. Nano-Micro Letters, 2022, 14, 6.	14.4	177
52	Rational Electrode–Electrolyte Design for Long-Life Rechargeable Aqueous Zinc-Ion Batteries. Journal of Physical Chemistry C, 2022, 126, 1264-1270.	1.5	8
53	Synergistic Manipulation of Na ⁺ Flux and Surfaceâ€Preferred Effect Enabling Highâ€Arealâ€Capacity and Dendriteâ€Free Sodium Metal Battery. Advanced Science, 2022, 9, e2103845.	5.6	26
54	Boosting the energy density of supercapacitors by designing both hollow NiO nanoparticles/nitrogen-doped carbon cathode and nitrogen-doped carbon anode from the same precursor. Chemical Engineering Journal, 2022, 431, 134083.	6.6	62

#	Article	IF	CITATIONS
55	Regulating solvation structure to stabilize zinc anode by fastening the free water molecules with an inorganic colloidal electrolyte. Nano Energy, 2022, 93, 106839.	8.2	88
56	Regulating zinc electroplating chemistry to achieve high energy coaxial fiber Zn ion supercapacitor for self-powered textile-based monitoring system. Nano Energy, 2022, 93, 106893.	8.2	36
57	Low-temperature and high-rate Zn metal batteries enabled by mitigating Zn2+ concentration polarization. Chemical Engineering Journal, 2022, 433, 134589.	6.6	35
58	A Selfâ€Regulated Interface toward Highly Reversible Aqueous Zinc Batteries. Advanced Energy Materials, 2022, 12, .	10.2	164
59	A renewable biomass-based lignin film as an effective protective layer to stabilize zinc metal anodes for high-performance zinc–iodine batteries. Journal of Materials Chemistry A, 2022, 10, 4845-4857.	5.2	47
60	Stable Zn Metal Anodes with Limited Zn-Doping in MgF2 Interphase for Fast and Uniformly Ionic Flux. Nano-Micro Letters, 2022, 14, 46.	14.4	23
61	Revisiting Charge Storage Mechanism of Reduced Graphene Oxide in Zinc Ion Hybrid Capacitor beyond the Contribution of Oxygenâ€Containing Groups. Advanced Functional Materials, 2022, 32, .	7.8	45
62	Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives. Nano-Micro Letters, 2022, 14, 42.	14.4	207
63	Highly reversible zinc metal anodes enabled by protonated melamine. Journal of Materials Chemistry A, 2022, 10, 6636-6640.	5.2	21
64	Gel Electrolyte Constructing Zn (002) Deposition Crystal Plane Toward Highly Stable Zn Anode. Advanced Science, 2022, 9, e2104832.	5.6	119
65	Insight on Organic Molecules in Aqueous Znâ€lon Batteries with an Emphasis on the Zn Anode Regulation. Advanced Energy Materials, 2022, 12, .	10.2	208
66	Stable interphase chemistry of textured Zn anode for rechargeable aqueous batteries. Science Bulletin, 2022, 67, 716-724.	4.3	80
67	Bonding interaction regulation in hydrogel electrolyte enable dendrite-free aqueous zinc-ion batteries from Ⱂ20 to 60°C. Chemical Engineering Journal, 2022, 434, 134646.	6.6	75
68	Antifreezing Hydrogel Electrolyte with Ternary Hydrogen Bonding for Highâ€Performance Zincâ€Ion Batteries. Advanced Materials, 2022, 34, e2110140.	11.1	186
69	Reshaping the electrolyte structure and interface chemistry for stable aqueous zinc batteries. Energy Storage Materials, 2022, 47, 203-210.	9.5	166
70	Tailoring Local Electrolyte Solvation Structure via a Mesoporous Molecular Sieve for Dendriteâ€Free Zinc Batteries. Advanced Functional Materials, 2022, 32, .	7.8	56
71	Forming an Amorphous ZnO Nanosheet Network by Confined Parasitic Reaction for Stabilizing Zn Anodes and Reducing Water Activity. ACS Applied Energy Materials, 2022, 5, 2290-2299.	2.5	11
72	Hydrogen Bondâ€Functionalized Massive Solvation Modules Stabilizing Bilateral Interfaces. Advanced Functional Materials, 2022, 32, .	7.8	82

#	Article	IF	CITATIONS
73	Electrochemical interface reconstruction to eliminate surface heterogeneity for dendrite-free zinc anodes. Energy Storage Materials, 2022, 47, 319-326.	9.5	39
74	Modulated bonding interaction in propanediol electrolytes toward stable aqueous zinc-ion batteries. Science China Materials, 2022, 65, 1156-1164.	3.5	37
75	'Cation/Anion With Co-Solvation' Type High-Voltage Aqueous Electrolyte Enabled by Strong Hydrogen Bonding. SSRN Electronic Journal, 0, , .	0.4	0
76	Electrochemical Interface Reconstruction to Eliminate Surface Heterogeneity for Dendrite-Free Zinc Anodes. SSRN Electronic Journal, 0, , .	0.4	0
77	Modification on Water Electrochemical Environment for High Efficient Al-Air Battery: Achieved by a Low-Cost Sucrose Additive. SSRN Electronic Journal, 0, , .	0.4	0
78	Historical development and novel concepts on electrolytes for aqueous rechargeable batteries. Energy and Environmental Science, 2022, 15, 1805-1839.	15.6	71
79	Highly reversible zinc metal anodes enabled by a three-dimensional silver host for aqueous batteries. Journal of Materials Chemistry A, 2022, 10, 10043-10050.	5.2	25
80	Navigating fast and uniform zinc deposition <i>via</i> a versatile metal–organic complex interphase. Energy and Environmental Science, 2022, 15, 1872-1881.	15.6	145
81	A Universal Additive Strategy to Reshape Electrolyte Solvation Structure toward Reversible Zn Storage. Advanced Energy Materials, 2022, 12, .	10.2	155
82	Electrolyte Engineering Enables High Performance Zincâ€ion Batteries. Small, 2022, 18, e2107033.	5.2	118
83	Low Currentâ€Density Stable Zincâ€Metal Batteries Via Aqueous/Organic Hybrid Electrolyte. Batteries and Supercaps, 2022, 5, .	2.4	42
84	Diminishing Interfacial Turbulence by Colloidâ€Polymer Electrolyte to Stabilize Zinc Ion Flux for Deep ycling Zn Metal Batteries. Advanced Materials, 2022, 34, e2200131.	11.1	54
85	New Type of Dynamically "Solid–Liquid―Interconvertible Electrolyte for High-Rate Zn Metal Battery. Nano Letters, 2022, 22, 2898-2906.	4.5	13
86	Hydrophobization Engineering of the Air–Cathode Catalyst for Improved Oxygen Diffusion towards Efficient Zinc–Air Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	72
87	A Comprehensive Understanding of Interlayer Engineering in Layered Manganese and Vanadium Cathodes for Aqueous Znâ€lon Batteries. Chemistry - an Asian Journal, 2022, 17, .	1.7	8
88	Artificial solid electrolyte interface layer based on sodium titanate hollow microspheres assembled by nanotubes to stabilize zinc metal electrodes. Journal of Energy Chemistry, 2022, 71, 539-546.	7.1	15
89	From room temperature to harsh temperature applications: Fundamentals and perspectives on electrolytes in zinc metal batteries. Science Advances, 2022, 8, eabn5097.	4.7	164
90	Eutectic Electrolytes Chemistry for Rechargeable Zn Batteries. Small, 2022, 18, e2200550.	5.2	40

ARTICLE IF CITATIONS # Rapid Electrochemical Activation of V₂0₃@C Cathode for Highâ€Performance 3.6 16 91 Zincâ€lon Batteries in Waterâ€inâ€Salt Electrolyte. ChemSusChem, 2022, 15, . Long-Life Aqueous Zn–I₂ Battery Enabled by a Low-Cost Multifunctional Zeolite Membrane 4.5 Separator. Nano Letters, 2022, 22, 2538-2546. Hydrated Eutectic Electrolyte with Ligandâ€Oriented Solvation Shell to Boost the Stability of Zinc 93 7.8 87 Battery. Advanced Functional Materials, 2022, 32, . <i>N</i>,<i>N</i>,dimethylformamide tailors solvent effect to boost Zn anode reversibility in aqueous 94 electrolyte. National Science Review, 2022, 9, . Hydrophobization Engineering of the Airâ€"Cathode Catalyst for Improved Oxygen Diffusion towards 95 1.6 12 Efficient Zinc–Air Batteries. Angewandte Chemie, 2022, 134, . In Situ Constructing Coordination Compounds Interphase to Stabilize Zn Metal Anode for Highâ€Performance Aqueous Zn–SeS₂ Batteries. Small, 2022, 18, e2200567. 5.2 Eliminating Stubborn Insulated Deposition by Coordination Effect to Boost Zn Electrode Reversibility 97 1.8 4 in Aqueous Electrolyte. Frontiers in Chemistry, 2022, 10, 851973. Ethylene Glycol as an Antifreeze Additive and Corrosion Inhibitor for Aqueous Zincâ€Ion Batteries. 2.4 14 Batteries and Supercaps, 2022, 5, . Dual ions intercalation drives high-performance aqueous Zn-ion storage on birnessite-type manganese 99 9.5 43 oxides cathode. Energy Storage Materials, 2022, 49, 164-171. Facile synthesis Zn-Ni bimetallic MOF with enhanced crystallinity for high power density 1.8 supercapacitor applications. Inorganic Chemistry Communication, 2022, 139, 109391. Unveiling unique steric effect of threonine additive for highly reversible Zn anode. Nano Energy, 101 8.2 69 2022, 97, 107145. Low-cost and long-life Zn/Prussian blue battery using a water-in-ethanol electrolyte with a normal salt concentration. Energy Storage Materials, 2022, 48, 192-204. Modification on water electrochemical environment for durable Al-Air Battery: Achieved by a 103 6.6 30 Low-Cost sucrose additive. Chemical Engineering Journal, 2022, 438, 135538. Eutectic electrolyte and interface engineering for redox flow batteries. Energy Storage Materials, 2022, 48, 263-282. 104 High-energy-density aqueous zinc-based hybrid supercapacitor-battery with uniform zinc deposition 105 8.2 24 achieved by multifunctional decoupled additive. Nano Energy, 2022, 96, 107120. Manipulating the Zinc Deposition Behavior in Hexagonal Patterns at the Preferential Zn (100) Crystal Plane to Construct Surficial Dendriteâ€Free Zinc Metal Anode. Small, 2022, 18, e2105978. 107 A Symmetric Allâ€Organic Proton Battery in Mild Electrolyte. Angewandte Chemie, 2022, 134, . 1.6 29 A Symmetric Allâ€Organic Proton Battery in Mild Electrolyte. Angewandte Chemie - International Edition, 2022, 61, e202115180.

#	Article	IF	CITATIONS
109	Ion Sieve: Tailoring Zn ²⁺ Desolvation Kinetics and Flux toward Dendrite-Free Metallic Zinc Anodes. ACS Nano, 2022, 16, 1013-1024.	7.3	125
110	Eutectic Electrolytes in Advanced Metal-Ion Batteries. ACS Energy Letters, 2022, 7, 247-260.	8.8	61
111	Manipulating Interfacial Stability Via Absorption-Competition Mechanism for Long-Lifespan Zn Anode. Nano-Micro Letters, 2022, 14, 31.	14.4	30
112	Manipulating Ion Concentration to Boost Twoâ€Electron Mn ⁴⁺ /Mn ²⁺ Redox Kinetics through a Colloid Electrolyte for Highâ€Capacity Zinc Batteries. Advanced Energy Materials, 2022, 12, .	10.2	65
113	Metal-coordination chemistry guiding preferred crystallographic orientation for reversible zinc anode. Energy Storage Materials, 2022, 49, 463-470.	9.5	81
114	Polyiodide Confinement by Starch Enables Shuttleâ€Free Zn–Iodine Batteries. Advanced Materials, 2022, 34, e2201716.	11.1	98
115	Co-Solvent Electrolyte Engineering for Stable Anode-Free Zinc Metal Batteries. Journal of the American Chemical Society, 2022, 144, 7160-7170.	6.6	252
116	Elastomer–Alginate Interface for Highâ€Power and Highâ€Energy Zn Metal Anodes. Advanced Energy Materials, 2022, 12, .	10.2	51
117	Cyclohexanedodecol-Assisted Interfacial Engineering for Robust and High-Performance Zinc Metal Anode. Nano-Micro Letters, 2022, 14, 110.	14.4	42
118	An analysis of the electrochemical mechanism of manganese oxides in aqueous zinc batteries. CheM, 2022, 8, 924-946.	5.8	92
119	Polyvinyl alcohol coating induced preferred crystallographic orientation in aqueous zinc battery anodes. Nano Energy, 2022, 98, 107269.	8.2	102
120	Dual-anion-coordinated solvation sheath for stable aqueous zinc batteries. Journal of Power Sources, 2022, 535, 231452.	4.0	15
121	Two for one: propylene carbonate co-solvent for high performance aqueous zinc-ion batteries – remedies for persistent issues at both electrodes. Journal of Materials Chemistry A, 2022, 10, 12597-12607.	5.2	11
122	A hydrophobic and fluorophilic coating layer for stable and reversible aqueous zinc metal anodes. Chemical Engineering Journal, 2022, 446, 136607.	6.6	38
123	Stabilizing zinc anode for high-performance aqueous zinc ion batteries via employing a novel inositol additive. Journal of Alloys and Compounds, 2022, 914, 165231.	2.8	15
124	Quasiâ€Solid Electrolyte Design and In Situ Construction of Dual Electrolyte/Electrode Interphases for Highâ€Stability Zinc Metal Battery. Advanced Energy Materials, 2022, 12, .	10.2	42
125	Hierarchical Confinement Effect with Zincophilic and Spatial Traps Stabilized Zn-Based Aqueous Battery. Nano Letters, 2022, 22, 4223-4231.	4.5	99
126	Crystal Plane Reconstruction and Thin Protective Coatings Formation for Superior Stable Zn Anodes Cycling 1300 h. Small, 2022, 18, e2201443.	5.2	8

#	Article	IF	CITATIONS
127	High‥ield Carbon Dots Interlayer for Ultraâ€Stable Zinc Batteries. Advanced Energy Materials, 2022, 12, .	10.2	90
128	"Cation/anion with co-solvation―type high-voltage aqueous electrolyte enabled by strong hydrogen bonding. Nano Energy, 2022, 99, 107377.	8.2	12
129	Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry. Joule, 2022, 6, 1103-1120.	11.7	131
130	Antiâ€Freezing Strategies of Electrolyte and their Application in Electrochemical Energy Devices. Chemical Record, 2022, 22, .	2.9	9
131	Realizing highly reversible and deeply rechargeable Zn anode by porous zeolite layer. Journal of Power Sources, 2022, 540, 231659.	4.0	5
132	Multifunctional Water-Organic Hybrid Electrolyte for Rechargeable Zinc Ions Batteries. SSRN Electronic Journal, 0, , .	0.4	0
133	Regulating solvation shells and interfacial chemistry in zinc-ion batteries using glutaronitrile based electrolyte. Journal of Materials Chemistry A, 2022, 10, 14345-14354.	5.2	3
134	Modulating Solvation Structure by Tetrahydrofuran Additive for Aqueous Zinc Metal Batteries. SSRN Electronic Journal, 0, , .	0.4	0
135	Metalâ€Organic Frameworkâ€Based Materials for Aqueous Zincâ€Ion Batteries: Energy Storage Mechanism and Function. Chemical Record, 2022, 22, .	2.9	29
136	Cholinium Cations Enable Highly Compact and Dendriteâ€Free Zn Metal Anodes in Aqueous Electrolytes. Advanced Functional Materials, 2022, 32, .	7.8	91
137	Aqueous Electrolytes with Hydrophobic Organic Cosolvents for Stabilizing Zinc Metal Anodes. ACS Nano, 2022, 16, 9667-9678.	7.3	126
138	An Air-Rechargeable Zn/Organic Battery with Proton Storage. Journal of the American Chemical Society, 2022, 144, 10301-10308.	6.6	58
139	Trace tea polyphenols enabling reversible dendrite-free zinc anode. Journal of Colloid and Interface Science, 2022, 624, 450-459.	5.0	18
140	Phosphate interphase reinforced amorphous vanadium oxide cathode materials for aqueous zinc ion batteries. Chemical Communications, 2022, 58, 8089-8092.	2.2	3
141	Regulation of Zinc Interface by Maltitol for Long-Life Dendrite-free Aqueous Zinc Ion Batteries. Journal of Electronic Materials, 2022, 51, 4763-4771.	1.0	5
142	Biomolecular Regulation of Zinc Deposition to Achieve Ultra‣ong Life and Highâ€Rate Zn Metal Anodes. Small, 2022, 18, .	5.2	26
143	Molecularly engineered three-dimensional covalent organic framework protection films for highly stable zinc anodes in aqueous electrolyte. Energy Storage Materials, 2022, 51, 391-399.	9.5	31
144	Ultrathin ZrO2 coating layer regulates Zn deposition and raises long-life performance of aqueous Zn batteries. Materials Today Energy, 2022, 28, 101056.	2.5	35

ARTICLE IF CITATIONS Recent advances in MOFs/MOF derived nanomaterials toward high-efficiency aqueous zinc ion 145 9.5 55 batteries. Coordination Chemistry Reviews, 2022, 468, 214642. Stabilization of Zn anode via a multifunctional cysteine additive. Chemical Engineering Journal, 2022, 146 6.6 447, 137471. An amphoteric betaine electrolyte additive enabling a stable Zn metal anode for aqueous batteries. 147 2.2 15 Chemical Communications, 2022, 58, 8504-8507. Ion Motor as a New Universal Strategy for the Boosting the Performance of Zn-Ion Batteries. ACS 148 4.0 Applied Materials & amp; Interfaces, 2022, 14, 30839-30846. Regulating Water Activity for Rechargeable Zinc-Ion Batteries: Progress and Perspective. ACS Energy 149 8.8 94 Letters, 2022, 7, 2515-2530. Anionic Coâ€insertion Charge Storage in Dinitrobenzene Cathodes for Highâ€Performance Aqueous Zinc–Organic Batteries. Angewandte Chemie, 2022, 134, . 1.6 151 Pathways towards Highâ€Performance Aqueous Zincâ€Organic Batteries. Batteries and Supercaps, 2022, 5, . 2.4 6 Synergic Effect of Dendriteâ€Free and Zinc Gating in Ligninâ€Containing Cellulose Nanofibersâ€MXene Layer 5.6 38 Enabling Longâ€Cycleâ€Life Zinc Metal Batteries. Advanced Science, 2022, 9, . <i>In Situ</i> Construction of Protective Films on Zn Metal Anodes <i>via</i> Natural Protein 153 7.3 137 Additives Enabling High-Performance Zinc Ion Batteries. ACS Nano, 2022, 16, 11392-11404. Cu₇Te₄ as an Anode Material and Zn Dendrite Inhibitor for Aqueous Znâ€lon 154 Battery. Advanced Functional Materials, 2022, 32, . Anionic Coâ€insertion Charge Storage in Dinitrobenzene Cathodes for Highâ€Performance Aqueous 155 7.2 89 Zinc–Organic Batteries. Angewandte Chemie - International Edition, 2022, 61, . Aqueous zinc-ion batteries at extreme temperature: Mechanisms, challenges, and strategies. Energy 9.5 54 Storage Materials, 2022, 51, 683-718. Electrolyte additive engineering for aqueous Zn ion batteries. Energy Storage Materials, 2022, 51, 157 9.5 179 733-755. Toward reversible wide-temperature Zn storage by regulating the electrolyte solvation structure via trimethyl phosphate. Chemical Engineering Journal, 2022, 449, 137843. 6.6 High energy superstable hybrid capacitor with a <scp>selfâ€regulated</scp> Zn/electrolyte interface 159 8.5 14 and <scp>3D</scp> grapheneâ€like carbon cathode. InformaÄnÃ-MateriÃily, 2022, 4, . "Anode-free―Zn/LiFePO4 aqueous batteries boosted by hybrid electrolyte. Journal of Industrial and Engineering Chemistry, 2022, 114, 317-322. Multifunctional water-organic hybrid electrolyte for rechargeable zinc ions batteries. Chemical 161 6.6 34 Engineering Journal, 2022, 450, 138265. Boost Effect of Electrolyte Engineering Toward Long-Standing Zinc Anode Via a Non-Ionic Surfactant. 0.4 SSRN Electronic Journal, 0, , .

#	Article	IF	Citations
163	Boosting Zn metal anode stability: from fundamental science to design principles. EcoMat, 2022, 4, .	6.8	20
164	Crystal Water Boosted Zn ²⁺ Transfer Kinetics in Artificial Solid Electrolyte Interphase for High-Rate and Durable Zn Anodes. ACS Applied Energy Materials, 2022, 5, 10581-10590.	2.5	3
165	Regulating Dendrite-Free Zn Deposition by a Self-Assembled OH-Terminated SiO ₂ Nanosphere Layer toward a Zn Metal Anode. ACS Applied Materials & Interfaces, 2022, 14, 37759-37770.	4.0	12
166	Boosting Reversibility and Stability of Zn Anodes via Manipulation of Electrolyte Structure and Interface with Addition of Trace Organic Molecules. Advanced Energy Materials, 2022, 12, .	10.2	33
167	Celluloseâ€Acetate Coating by Integrating Ester Group with Zinc Salt for Dendriteâ€Free Zn Metal Anodes. Small, 2022, 18, .	5.2	22
168	In-situ construction of fluorinated solid-electrolyte interphase for highly reversible zinc anodes. Energy Storage Materials, 2022, 53, 559-568.	9.5	24
169	Tuning Znâ€lon Solvation Chemistry with Chelating Ligands toward Stable Aqueous Zn Anodes. Advanced Materials, 2022, 34, .	11.1	70
170	Prussian blue analogs cathodes for aqueous zinc ion batteries. Materials Today Energy, 2022, 29, 101095.	2.5	45
171	Tannin acid induced anticorrosive film toward stable Zn-ion batteries. Nano Energy, 2022, 102, 107721.	8.2	39
172	Missing-linker bifunctional MIL-125(Ti)-Zn interface modulation layer to simultaneously suppress hydrogen evolution reaction and dendrites for Zn metal anodes. Energy Storage Materials, 2022, 53, 322-330.	9.5	37
173	Releasing plating-induced stress for highly reversible aqueous Zn metal anodes. Nano Energy, 2022, 103, 107814.	8.2	16
174	A bifunctional nitrogen doped carbon network as the interlayer for dendrite-free Zn anode. Chemical Engineering Journal, 2023, 452, 139264.	6.6	9
175	A smelting–rolling strategy for ZnIn bulk phase alloy anodes. Chemical Science, 2022, 13, 11656-11665.	3.7	30
176	Multifunctional polyzwitterion ionic liquid coating for long-lifespan and dendrite-free Zn metal anodes. Journal of Materials Chemistry A, 2022, 10, 16952-16961.	5.2	11
177	Non-flammable, dilute, and hydrous organic electrolytes for reversible Zn batteries. Chemical Science, 2022, 13, 11320-11329.	3.7	43
178	Revitalizing zinc-ion batteries with advanced zinc anode design. Nanoscale Horizons, 2022, 8, 29-54.	4.1	19
179	Zinc dendrite suppression by a novel additive combination for rechargeable aqueous zinc batteries. RSC Advances, 2022, 12, 25054-25059.	1.7	5
180	Interspace and Vacancy Modulation: Promoting the Zinc Storage of an Alcoholâ€Based Organic–Inorganic Cathode in a Water–Organic Electrolyte. Advanced Materials, 2022, 34, .	11.1	17

#	Article	IF	CITATIONS
181	Regulation of Outer Solvation Shell Toward Superior Lowâ€Temperature Aqueous Zincâ€Ion Batteries. Advanced Materials, 2022, 34, .	11.1	65
182	Regulating Surface Reaction Kinetics through Ligand Field Effects for Fast and Reversible Aqueous Zinc Batteries. Angewandte Chemie, 2022, 134, .	1.6	10
183	Molecular Crowding Electrolytes for Stable Proton Batteries. Small, 2022, 18, .	5.2	15
185	Synergistic Chaotropic Effect and Cathode Interface Thermal Release Effect Enabling Ultralow Temperature Aqueous Zinc Battery. Small, 2022, 18, .	5.2	4
186	Effects of the pH Value on the Electrodeposition of Fe–P Alloy as a Magnetic Film Material. Journal of Physical Chemistry C, 2022, 126, 15472-15484.	1.5	6
187	Insight on the Doubleâ€Edged Sword Role of Water Molecules in the Anode of Aqueous Zincâ€Ion Batteries. Small Structures, 2022, 3, .	6.9	33
188	Regulating Surface Reaction Kinetics through Ligand Field Effects for Fast and Reversible Aqueous Zinc Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	31
189	Understanding H ₂ Evolution Electrochemistry to Minimize Solvated Water Impact on Zincâ€Anode Performance. Advanced Materials, 2022, 34, .	11.1	109
190	An electrolyte additive for interface regulations of both anode and cathode for aqueous zinc-vanadium oxide batteries. Chemical Engineering Journal, 2023, 452, 139577.	6.6	22
191	Fast and Regulated Zinc Deposition in a Semiconductor Substrate toward Highâ€Performance Aqueous Rechargeable Batteries. Advanced Functional Materials, 2022, 32, .	7.8	67
192	Additive engineering for a hydrophilic/zincophilic polymeric layer towards dendrite-free zinc anode. Materials Today Energy, 2022, 29, 101130.	2.5	15
193	A Dendrite-Free Zn Anode Co-modified with In and ZnF ₂ for Long-Life Zn-Ion Capacitors. ACS Applied Materials & Interfaces, 2022, 14, 46665-46672.	4.0	2
194	Aqueous sodium ion hybrid batteries with ultra-long cycle life at -50 ℃. Energy Storage Materials, 2022, 53, 523-531.	9.5	15
195	Anode optimization strategies for aqueous zinc-ion batteries. Chemical Science, 2022, 13, 14246-14263.	3.7	36
196	Emerging strategies for steering orientational deposition toward high-performance Zn metal anodes. Energy and Environmental Science, 2022, 15, 5017-5038.	15.6	93
197	Redoxâ€Active Polymer Integrated with MXene for Ultraâ€6table and Fast Aqueous Proton Storage. Advanced Functional Materials, 2023, 33, .	7.8	74
198	Development of long lifespan high-energy aqueous organic iodine rechargeable batteries. Nature Communications, 2022, 13, .	5.8	19
199	In situ growing 3D-Cu coating to improve the reversibility and reaction kinetics of Zn metal anodes. Frontiers in Chemistry, 0, 10, .	1.8	0

#	Article	IF	CITATIONS
200	Thermal‣table Separators: Design Principles and Strategies Towards Safe Lithiumâ€lon Battery Operations. ChemSusChem, 2022, 15, .	3.6	13
201	Three Birds with One Stone: Tetramethylurea as Electrolyte Additive for Highly Reversible Znâ€Metal Anode. Advanced Functional Materials, 2022, 32, .	7.8	62
202	Molecular rowding Effect Mimicking Coldâ€Resistant Plants to Stabilize the Zinc Anode with Wider Service Temperature Range. Advanced Materials, 2023, 35, .	11.1	68
203	Enabling Low-Temperature and High-Rate Zn Metal Batteries by Activating Zn Nucleation with Single-Atomic Sites. ACS Energy Letters, 2022, 7, 4028-4035.	8.8	27
204	H ₂ O Activity Adjustment by Hydrogen Bonding Enables Highâ€Performance Znâ€Organic Battery. ChemSusChem, 2022, 15, .	3.6	2
206	Rational Design of Sulfonamideâ€Based Additive Enables Stable Solid Electrolyte Interphase for Reversible Zn Metal Anode. Advanced Functional Materials, 2023, 33, .	7.8	28
207	In Situ Formation of Nitrogenâ€Rich Solid Electrolyte Interphase and Simultaneous Regulating Solvation Structures for Advanced Zn Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	63
208	Inâ€situ Formation of Nitrogenâ€Rich Solid Electrolyte Interphase and Simultaneous Regulating Solvation Structures for Advanced Zn Metal Batteries. Angewandte Chemie, 0, , .	1.6	6
209	Zn metal anodes stabilized by an intrinsically safe, dilute, and hydrous organic electrolyte. Energy Storage Materials, 2023, 54, 276-283.	9.5	47
210	Recent progress of aqueous and organic/aqueous hybrid electrolytes for low-temperature rechargeable metal-ion batteries and supercapacitors. Energy Storage Materials, 2023, 54, 382-402.	9.5	19
211	Constructing Three-Dimensional Topological Zn Deposition for Long-Life Aqueous Zn-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 51010-51017.	4.0	5
212	Enabling High-Rate and High-Areal-Capacity Zn Deposition via an Interfacial Preferentially Adsorbed Molecular Layer. ACS Energy Letters, 2023, 8, 31-39.	8.8	39
213	Brine Refrigerants for Lowâ€cost, Safe Aqueous Supercapacitors with Ultraâ€long Stable Operation at Low Temperatures. Advanced Functional Materials, 2023, 33, .	7.8	12
214	Designing modern aqueous batteries. Nature Reviews Materials, 2023, 8, 109-122.	23.3	153
215	Electrolyte additive enhances the electrochemical performance of Cu for rechargeable Cu//Zn batteries. Journal of Energy Chemistry, 2023, 77, 172-179.	7.1	8
216	High apacity Zinc Anode with 96 % Utilization Rate Enabled by Solvation Structure Design. Angewandte Chemie, 2023, 135, .	1.6	2
217	High apacity Zinc Anode with 96 % Utilization Rate Enabled by Solvation Structure Design. Angewandte Chemie - International Edition, 2023, 62, .	7.2	70
218	Metal nitrides as efficient electrode material for supercapacitors: A review. Journal of Energy Storage, 2022, 56, 105912.	3.9	34

#	Article	IF	CITATIONS
219	Binary solvents assisting the long-term stability of aqueous K/Zn hybrid batteries. Materials Today Energy, 2023, 31, 101204.	2.5	7
220	Differentiating contribution to desolvation ability from molecular structure and composition for screening highly-effective additives to boost reversibility of zinc metal anode. Energy Storage Materials, 2023, 55, 669-679.	9.5	16
221	A biomimetic polymer-clay nanocomposite coating for dendrite-free Zn metal anode. Chemical Engineering Journal, 2023, 456, 141016.	6.6	7
222	Polysaccharide hydrogel electrolytes with robust interfacial contact to electrodes for quasi-solid state flexible aqueous zinc ion batteries with efficient suppressing of dendrite growth. Journal of Colloid and Interface Science, 2023, 633, 142-154.	5.0	16
223	Dynamic reconstruction of Ni-Zn alloy solid-electrolyte interface for highly stable Zn anode. Nano Research, 2023, 16, 11604-11611.	5.8	2
224	A Semiâ€Liquid Electrode toward Stable Zn Powder Anode. Advanced Functional Materials, 2023, 33, .	7.8	19
225	Regulating the solventized structure to achieve highly reversible zinc plating/stripping for dendrite-free Zn anode by sulfolane additive. Chemical Engineering Journal, 2023, 455, 140538.	6.6	11
226	Simulation-Assisted Modularized Material Design Protocol Enables MoS ₂ to Realize Superior Zinc-Ion Storage. ACS Applied Energy Materials, 2022, 5, 15452-15462.	2.5	2
227	Mosaic Nanocrystalline Graphene Skin Empowers Highly Reversible Zn Metal Anodes. Advanced Science, 2023, 10, .	5.6	19
228	Monolithic Phosphate Interphase for Highly Reversible and Stable Zn Metal Anode. Angewandte Chemie, 2023, 135, .	1.6	12
229	Constructing 2D Sandwichâ€like MOF/MXene Heterostructures for Durable and Fast Aqueous Zincâ€lon Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	33
230	Monolithic Phosphate Interphase for Highly Reversible and Stable Zn Metal Anode. Angewandte Chemie - International Edition, 2023, 62, .	7.2	83
231	Comprehensive H ₂ O Molecules Regulation via Deep Eutectic Solvents for Ultra‧table Zinc Metal Anode. Angewandte Chemie, 2023, 135, .	1.6	1
232	Comprehensive H ₂ 0 Molecules Regulation via Deep Eutectic Solvents for Ultra‣table Zinc Metal Anode. Angewandte Chemie - International Edition, 2023, 62, .	7.2	63
233	Metallic Zinc Anode Working at 50 and 50ÂmAhÂcm ^{â^'2} with High Depth of Discharge via Electrical Double Layer Reconstruction. Advanced Functional Materials, 2023, 33, .	7.8	46
234	Regulating Zn(002) Deposition toward Long Cycle Life for Zn Metal Batteries. ACS Energy Letters, 2023, 8, 372-380.	8.8	50
235	Constructing 2D Sandwichâ€like MOF/MXene Heterostructures for Durable and Fast Aqueous Zincâ€lon Batteries. Angewandte Chemie, 2023, 135, .	1.6	9
236	Nitrogenâ€Doped and Sulfonated Carbon Dots as a Multifunctional Additive to Realize Highly Reversible Aqueous Zincâ€Ion Batteries. Small, 2023, 19, .	5.2	20

#	Article	IF	CITATIONS
237	Towards high-performance zinc anode for zinc ion hybrid capacitor: Concurrently tailoring hydrodynamic stability, zinc deposition and solvation structure via electrolyte additive. Energy Storage Materials, 2023, 55, 857-866.	9.5	17
238	Enhancing electrochemical performance and stabilizing zinc anode in mild acidic electrolyte using combined additive. Materials Science for Energy Technologies, 2023, 6, 178-191.	1.0	5
239	Synchronous Dual Electrolyte Additive Sustains Zn Metal Anode with 5600â€h Lifespan. Angewandte Chemie - International Edition, 2023, 62, .	7.2	26
240	A Double-Functional Additive Containing Nucleophilic Groups for High-Performance Zn-Ion Batteries. ACS Nano, 2023, 17, 1610-1621.	7.3	107
241	Three-dimensional Porous Alloy Host for Highly Stable and Dendrite-Free Zinc Metal Anode. Journal of the Electrochemical Society, 2023, 170, 010516.	1.3	2
242	Recent advances in manipulating strategy of aqueous electrolytes for Zn anode stabilization. Energy Storage Materials, 2023, 56, 227-257.	9.5	35
243	Nanoscale Ultrafine Zinc Metal Anodes for High Stability Aqueous Zinc Ion Batteries. Nano Letters, 2023, 23, 541-549.	4.5	30
244	Synchronous Dual Electrolyte Additive Sustains Zn Metal Anode with 5600â€h Lifespan. Angewandte Chemie, 2023, 135, .	1.6	2
245	Metal-organic frameworks with carboxyl functionalized channels as multifunctional ion-conductive interphase for highly reversible Zn anode. Energy Storage Materials, 2023, 56, 76-86.	9.5	20
246	Electrolyte additive of sorbitol rendering aqueous zinc-ion batteries with dendrite-free behavior and good anti-freezing ability. Chemical Engineering Journal, 2023, 458, 141392.	6.6	23
247	Reconstructing anode/electrolyte interface and solvation structure towards high stable zinc anode. Chemical Engineering Journal, 2023, 457, 141272.	6.6	26
248	A co-solvent in aqueous electrolyte towards ultralong-life rechargeable zinc-ion batteries. Energy Storage Materials, 2023, 56, 174-182.	9.5	28
249	Stabilizing zinc deposition through solvation sheath regulation and preferential adsorption by electrolyte additive of lithium difluoro(oxalato)borate. Chemical Engineering Journal, 2023, 457, 141328.	6.6	7
250	Integration of three functional layers constructed simultaneously in combustion process for reversible zinc anode. Applied Surface Science, 2023, 615, 156384.	3.1	5
251	Electrolyte engineering strategies for regulation of the Zn metal anode in aqueous Znâ€ion batteries. , 2023, 2, .		28
252	Highâ€Performance Zincâ€lon Battery Enabled by Tuning the Terminal Group and Chain Length of PEOâ€based Oligomers. Batteries and Supercaps, 0, , .	2.4	1
253	Regulating solvation and interface chemistry enables advanced aluminum-air batteries. Chemical Communications, 2023, 59, 2588-2591.	2.2	3
254	Efficient Charge Storage in Zinc–lodine Batteries based on Preâ€Embedded Iodineâ€Ions with Reduced Electrochemical Reaction Barrier and Suppression of Polyiodide Selfâ€Shuttle Effect. Advanced Functional Materials, 2023, 33, .	7.8	18

#	Article	IF	Citations
255	Decreasing Water Activity Using the Tetrahydrofuran Electrolyte Additive for Highly Reversible Aqueous Zinc Metal Batteries. ACS Applied Materials & Interfaces, 2023, 15, 6647-6656.	4.0	8
256	Ethanol Solvent Used in Constructing Ultra-Low-Temperature Zinc-Ion Capacitors with a Long Cycling Life. ACS Applied Materials & Interfaces, 2023, 15, 5180-5190.	4.0	7
257	Mini-Review on the Regulation of Electrolyte Solvation Structure for Aqueous Zinc Ion Batteries. Batteries, 2023, 9, 73.	2.1	3
258	Enabling Highly Reversible Zn Anode by Multifunctional Synergistic Effects of Hybrid Solute Additives. ACS Energy Letters, 2023, 8, 1192-1200.	8.8	45
259	Protonâ€Conductive Supramolecular Hydrogenâ€Bonded Organic Superstructures for Highâ€Performance Zincâ€Organic Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	49
260	Two-dimensional CuO nanosheets-induced MOF composites and derivatives for dendrite-free zinc-ion batteries. Nano Research, 2023, 16, 6881-6889.	5.8	8
261	Integrated Micro Space Electrostatic Field in Aqueous Znâ€lon Battery: Scalable Electrospray Fabrication of Porous Crystalline Anode Coating. Angewandte Chemie, 2023, 135, .	1.6	2
262	Key approaches and challenges in fabricating advanced flexible zinc-ion batteries with functional hydrogel electrolytes. Energy Storage Materials, 2023, 56, 351-393.	9.5	32
263	Advances and strategies of electrolyte regulation in Zn-ion batteries. Materials Chemistry Frontiers, 2023, 7, 3232-3258.	3.2	11
264	Selection criteria for electrical double layer structure regulators enabling stable Zn metal anodes. Energy and Environmental Science, 2023, 16, 1721-1731.	15.6	48
265	Sulfolane-containing aqueous electrolyte solutions for producing efficient ampere-hour-level zinc metal battery pouch cells. Nature Communications, 2023, 14, .	5.8	53
266	Construction of an Artificial Interfacial Layer with Porous Structure toward Stable Zincâ€Metal Anodes. Small Science, 2023, 3, .	5.8	28
267	Hydrogen-bonds reconstructing electrolyte enabling low-temperature aluminum-air batteries. Energy Storage Materials, 2023, 59, 102756.	9.5	6
268	Byproduct reverse engineering to construct unusually enhanced protection layers for dendrite-free Zn anode. Chemical Engineering Journal, 2023, 464, 142580.	6.6	7
269	Upcycling of phosphogypsum waste for efficient zinc-ion batteries. Journal of Energy Chemistry, 2023, 81, 157-166.	7.1	16
270	Integrated Micro Space Electrostatic Field in Aqueous Znâ€lon Battery: Scalable Electrospray Fabrication of Porous Crystalline Anode Coating. Angewandte Chemie - International Edition, 2023, 62,	7.2	38
271	Protonâ€Conductive Supramolecular Hydrogenâ€Bonded Organic Superstructures for Highâ€Performance Zincâ€Organic Batteries. Angewandte Chemie, 2023, 135, .	1.6	5
272	Bifunctional electrolyte regulation towards low-temperature and high-stability Zn-ion hybrid capacitor. Journal of Energy Chemistry, 2023, 79, 495-504.	7.1	12

#	Article	IF	CITATIONS
273	Electrolytes in Organic Batteries. Chemical Reviews, 2023, 123, 1712-1773.	23.0	57
274	Sustained-Compensated Interfacial Zincophilic Sites to Assist High-Capacity Aqueous Zn Metal Batteries. Nano Letters, 2023, 23, 1135-1143.	4.5	9
275	Simultaneous tailoring of hydrogen evolution and dendrite growth <i>via</i> a fertilizer-derived additive for the stabilization of the zinc anode interface. Journal of Materials Chemistry A, 2023, 11, 6403-6412.	5.2	7
276	Performance improvement of aqueous zinc batteries by zinc oxide and Ketjen black co-modified glass fiber separators. RSC Advances, 2023, 13, 6453-6458.	1.7	1
277	Synergistic enhanced Zinc-ion battery performance achieving by atomic layer deposition of TiO2 on three-dimensional carbon nanotube network decorated Zn anode. Electrochimica Acta, 2023, 447, 142085.	2.6	2
278	Interfacial reconstruction via electronegative sulfonated carbon dots in hybrid electrolyte for ultra-durable zinc battery. Chemical Engineering Journal, 2023, 461, 142105.	6.6	11
279	Reconstructing the Anode Interface and Solvation Shell for Reversible Zinc Anodes. ACS Applied Materials & amp; Interfaces, 2023, 15, 11940-11948.	4.0	20
280	pHâ€Triggered Molecular Switch Toward Textureâ€Regulated Zn Anode. Angewandte Chemie - International Edition, 2023, 62, .	7.2	34
281	Regulation of desolvation process and dense electrocrystalization behavior for stable Zn metal anode. Energy Storage Materials, 2023, 57, 628-638.	9.5	21
282	Amorphous MOF as smart artificial solid/electrolyte interphase for highly-stable Zn-ion batteries. Chemical Engineering Journal, 2023, 462, 142270.	6.6	15
283	pHâ€Triggered Molecular Switch Toward Textureâ€Regulated Zn Anode. Angewandte Chemie, 2023, 135, .	1.6	6
284	Regulation of Ionic Distribution and Desolvation Activation Energy Enabled by In Situ Zinc Phosphate Protective Layer toward Highly Reversible Zinc Metal Anodes. Advanced Functional Materials, 2023, 33,	7.8	23
285	Electrode/electrolyte interfacial engineering for aqueous Znâ€ion batteries. , 2023, 2, 186-212.		9
286	Solute-solvent dual engineering toward versatile electrolyte for high-voltage aqueous zinc-based energy storage devices. Fundamental Research, 2023, , .	1.6	2
287	Interphases in aqueous rechargeable zinc metal batteries. Journal of Materials Chemistry A, 2023, 11, 8470-8496.	5.2	6
288	Insight into the development of electrolytes for aqueous zinc metal batteries from alkaline to neutral. Chinese Chemical Letters, 2024, 35, 108337.	4.8	5
289	Agar-based hydrogel polymer electrolyte for high-performance zinc-ion batteries at all climatic temperatures. IScience, 2023, 26, 106437.	1.9	5
290	An Antiâ€Freezing Hydrogel Electrolyte for Flexible Zincâ€lon Batteries Operating at â~'70°C. Advanced Functional Materials, 2023, 33,	7.8	30

#	Article	IF	CITATIONS
291	Inhibition of side reactions and dendrite growth using a low-cost and non-flammable eutectic electrolyte for high-voltage and super-stable zinc hybrid batteries. Journal of Materials Chemistry A, 2023, 11, 8368-8379.	5.2	6
292	Organic pH Buffer for Dendriteâ€Free and Shuttleâ€Free Znâ€I ₂ Batteries. Angewandte Chemie, 2023, 135, .	1.6	1
293	Chloride electrolyte enabled practical zinc metal battery with a near-unity Coulombic efficiency. Nature Sustainability, 2023, 6, 806-815.	11.5	52
294	Organic pH Buffer for Dendriteâ€Free and Shuttleâ€Free Znâ€l ₂ Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	65
295	Regulating the Inner Helmholtz Plane with a High Donor Additive for Efficient Anode Reversibility in Aqueous Znâ€Ion Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	41
296	Regulating the Inner Helmholtz Plane with a High Donor Additive for Efficient Anode Reversibility in Aqueous Znâ€lon Batteries. Angewandte Chemie, 2023, 135, .	1.6	7
297	Mitigating the interfacial concentration gradient by negatively charged quantum dots toward dendrite-free Zn anodes. Energy Storage Materials, 2023, 58, 215-221.	9.5	32
298	Functional group differentiation of isomeric solvents enables distinct zinc anode chemistry. , 2023, 2, e9120064.		15
299	Manipulating Electric Double Layer Adsorption for Stable Solidâ€Electrolyte Interphase in 2.3â€Ah Znâ€Pouch Cells. Angewandte Chemie - International Edition, 2023, 62, .	7.2	25
300	Manipulating Electric Double Layer Adsorption for Stable Solidâ€Electrolyte Interphase in 2.3â€Ah Znâ€Pouch Cells. Angewandte Chemie, 2023, 135, .	1.6	1
301	Anomalous Inferior Zn Anode in Highâ€Concentration Electrolyte: Leveraging Solidâ€Electrolyteâ€Interface for Stabilized Cycling of Aqueous Znâ€Metal Batteries. ChemSusChem, 2023, 16, .	3.6	3
302	Simultaneously Regulating Solvation Structure and Interphase by Strong Donor Cosolvent for Stable Zn-Metal Batteries. Journal of Physical Chemistry C, 2023, 127, 7078-7086.	1.5	4
303	Synergetic modulation on ionic association and solvation structure by electron-withdrawing effect for aqueous zinc-ion batteries. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	22
304	Competitive Solvation-Induced Interphases Enable Highly Reversible Zn Anodes. ACS Energy Letters, 2023, 8, 2086-2096.	8.8	34
305	Challenges and Strategies in the Development of Zincâ€ion Batteries. Small Methods, 2023, 7, .	4.6	12
306	Rational Design of Electrode–Electrolyte Interphase and Electrolytes for Rechargeable Proton Batteries. Nano-Micro Letters, 2023, 15, .	14.4	5
307	Surface Control Behavior toward Crystal Regulation and Anticorrosion Capacity for Zinc Metal Anodes. ACS Applied Materials & amp; Interfaces, 2023, 15, 20040-20052.	4.0	8
308	Reconstruction of helmholtz plane to stabilize zinc metal anode/electrolyte interface. Energy Storage Materials, 2023, 59, 102774.	9.5	12

#	Article	IF	CITATIONS
309	Developing Cathode Materials for Aqueous Zinc Ion Batteries: Challenges and Practical Prospects. Advanced Functional Materials, 2024, 34, .	7.8	45
310	Regulating the Water Molecular in the Solvation Structure for Stable Zinc Metal Batteries. Advanced Functional Materials, 2023, 33, .	7.8	9
311	Toward stable and highly reversible zinc anodes for aqueous batteries via electrolyte engineering. Journal of Energy Chemistry, 2023, 83, 209-228.	7.1	8
356	Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries. Chemical Society Reviews, 2023, 52, 5255-5316.	18.7	24
372	Recent progress and prospects of rare earth elements for advanced aqueous zinc batteries. Inorganic Chemistry Frontiers, 2023, 10, 5802-5811.	3.0	5
385	On Energy Storage Chemistry of Aqueous Zn-Ion Batteries: From Cathode to Anode. Electrochemical Energy Reviews, 2023, 6, .	13.1	7
393	Progress in Electrolyte Engineering of Aqueous Batteries in a Wide Temperature Range. Transactions of Tianjin University, 0, , .	3.3	1
413	A long-term stable zinc metal anode enabled by a mannitol additive. Journal of Materials Chemistry A, 2023, 11, 23779-23786.	5.2	1
425	Electrolyte Strategies Toward Optimizing Zn Anode for Zinc-Ion Batteries. Transactions of Tianjin University, 2023, 29, 407-431.	3.3	1
453	Advance in reversible Zn anodes promoted by 2D materials. Rare Metals, 0, , .	3.6	0
461	Design Strategies for Aqueous Zinc Metal Batteries with High Zinc Utilization: From Metal Anodes to	14.4	3

Anode-Free Structures. Nano-Micro Letters, 2024, 16, .