Mosaic nanoparticles elicit cross-reactive immune resp in mice

Science

371, 735-741

DOI: 10.1126/science.abf6840

Citation Report

#	Article	IF	CITATIONS
4	mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature, 2021, 592, 616-622.	13.7	1,232
12	Profiles of current COVID-19 vaccines. Wiener Klinische Wochenschrift, 2021, 133, 271-283.	1.0	32
13	Quadrivalent influenza nanoparticle vaccines induce broad protection. Nature, 2021, 592, 623-628.	13.7	180
15	A Comprehensive Review of the Global Efforts on COVID-19 Vaccine Development. ACS Central Science, 2021, 7, 512-533.	5.3	217
18	Molecular Aspects Concerning the Use of the SARS-CoV-2 Receptor Binding Domain as a Target for Preventive Vaccines. ACS Central Science, 2021, 7, 757-767.	5.3	46
19	Development of Spike Receptor-Binding Domain Nanoparticles as a Vaccine Candidate against SARS-CoV-2 Infection in Ferrets. MBio, 2021, 12, .	1.8	40
23	Neutralizing antibody vaccine for pandemic and pre-emergent coronaviruses. Nature, 2021, 594, 553-559.	13.7	199
26	COVIDâ€19: vaccine's progress. Microbial Biotechnology, 2021, 14, 1246-1257.	2.0	16
27	Advances of nanomaterialsâ€based strategies for fighting against COVIDâ€19. View, 2021, 2, 20200180.	2.7	16
32	Intestinal Host Response to SARS-CoV-2 Infection and COVID-19 Outcomes in Patients With Gastrointestinal Symptoms. Gastroenterology, 2021, 160, 2435-2450.e34.	0.6	118
33	Nanomedicine: A Diagnostic and Therapeutic Approach to COVID-19. Frontiers in Medicine, 2021, 8, 648005.	1.2	25
34	Stabilization of the SARS-CoV-2 Spike Receptor-Binding Domain Using Deep Mutational Scanning and Structure-Based Design. Frontiers in Immunology, 2021, 12, 710263.	2.2	32
35	Structure-based design of novel polyhedral protein nanomaterials. Current Opinion in Microbiology, 2021, 61, 51-57.	2.3	24
37	Tackling COVID-19 with neutralizing monoclonal antibodies. Cell, 2021, 184, 3086-3108.	13.5	309
38	B cell genomics behind cross-neutralization of SARS-CoV-2 variants and SARS-CoV. Cell, 2021, 184, 3205-3221.e24.	13.5	73
40	Molecular Display on Protein Nanocompartments: Design Strategies and Systems Applications. ChemSystemsChem, 2022, 4, .	1.1	8
41	Fusion Protein of Rotavirus VP6 and SARS-CoV-2 Receptor Binding Domain Induces T Cell Responses. Vaccines, 2021, 9, 733.	2.1	4
43	Polymersomes Decorated with the SARS-CoV-2 Spike Protein Receptor-Binding Domain Elicit Robust Humoral and Cellular Immunity. ACS Central Science, 2021, 7, 1368-1380.	5.3	21

#	ARTICLE	IF	Citations
44	SARS-CoV-2 RBD-Tetanus Toxoid Conjugate Vaccine Induces a Strong Neutralizing Immunity in Preclinical Studies. ACS Chemical Biology, 2021, 16, 1223-1233.	1.6	57
45	Elicitation of Neutralizing Antibody Responses to HIV-1 Immunization with Nanoparticle Vaccine Platforms. Viruses, 2021, 13, 1296.	1.5	3
46	Cross-reactive antibodies against human coronaviruses and the animal coronavirome suggest diagnostics for future zoonotic spillovers. Science Immunology, 2021, 6, .	5.6	26
49	Broad sarbecovirus neutralization by a human monoclonal antibody. Nature, 2021, 597, 103-108.	13.7	220
50	Possible Targets of Pan-Coronavirus Antiviral Strategies for Emerging or Re-Emerging Coronaviruses. Microorganisms, 2021, 9, 1479.	1.6	10
51	SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape. Nature, 2021, 597, 97-102.	13.7	385
52	Novel attempts launched toward universal Sarbecovirus vaccine. Cell Research, 2021, 31, 1226-1227.	5.7	0
53	Singleâ€dose immunisation with a multimerised SARSâ€CoVâ€2 receptor binding domain (RBD) induces an enhanced and protective response in mice. FEBS Letters, 2021, 595, 2323-2340.	1.3	24
55	Accelerated COVID-19 vaccine development: milestones, lessons, and prospects. Immunity, 2021, 54, 1636-1651.	6.6	165
56	Detection and characterization of the SARS-CoV-2 lineage B.1.526 in New York. Nature Communications, 2021, 12, 4886.	5. 8	65
57	Affinity maturation of SARS-CoV-2 neutralizing antibodies confers potency, breadth, and resilience to viral escape mutations. Immunity, 2021, 54, 1853-1868.e7.	6.6	230
58	Chimeric spike mRNA vaccines protect against Sarbecovirus challenge in mice. Science, 2021, 373, 991-998.	6.0	144
59	Structural and energetic profiling of SARS-CoV-2 receptor binding domain antibody recognition and the impact of circulating variants. PLoS Computational Biology, 2021, 17, e1009380.	1.5	13
60	Broad cross-reactivity across sarbecoviruses exhibited by a subset of COVID-19 donor-derived neutralizing antibodies. Cell Reports, 2021, 36, 109760.	2.9	80
61	Potent neutralization of <scp>SARSâ€CoV</scp> â€2 including variants of concern by vaccines presenting the receptorâ€binding domain multivalently from nanoscaffolds. Bioengineering and Translational Medicine, 2021, 6, e10253.	3.9	19
62	Live imaging of SARS-CoV-2 infection in mice reveals that neutralizing antibodies require Fc function for optimal efficacy. Immunity, 2021, 54, 2143-2158.e15.	6.6	155
66	A universal bacteriophage T4 nanoparticle platform to design multiplex SARS-CoV-2 vaccine candidates by CRISPR engineering. Science Advances, 2021, 7, eabh1547.	4.7	44
68	SARS-COV-2 recombinant Receptor-Binding-Domain (RBD) induces neutralizing antibodies against variant strains of SARS-CoV-2 and SARS-CoV-1. Vaccine, 2021, 39, 5769-5779.	1.7	23

#	Article	IF	CITATIONS
70	Recent progress on the mutations of SARS-CoV-2 spike protein and suggestions for prevention and controlling of the pandemic. Infection, Genetics and Evolution, 2021, 93, 104971.	1.0	19
71	Bio-mimic particles for the enhanced vaccinations: Lessons learnt from the natural traits and pathogenic invasion. Advanced Drug Delivery Reviews, 2021, 176, 113871.	6.6	13
73	Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines. Cell, 2021, 184, 5432-5447.e16.	13.5	131
74	Nâ€Terminal Modification of Glyâ€Hisâ€Tagged Proteins with Azidogluconolactone. ChemBioChem, 2021, 22, 3199-3207.	1.3	6
75	Engineered SARS-CoV-2 receptor binding domain improves manufacturability in yeast and immunogenicity in mice. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	68
78	Naive human B cells engage the receptor binding domain of SARS-CoV-2, variants of concern, and related sarbecoviruses. Science Immunology, 2021, 6, eabl5842.	5.6	33
79	ĐĐ°Đ·Ñ€Đ°Đ±Đ¾Ñ,ĐºĐ° Đ¿Đ»Đ°Ñ,Ñ"Đ¾Ñ€Đ¼Ñ‹ ĐʻĐ»Ñ•Đ¿Đ¾Đ»ÑƒÑ‡ĐμĐ½Đ,ѕрĐμĐºĐ¾Đ¼Đ±Đ¸Đ½Đ°	Đ¼aÑŋĐ⅓2	Ñ‹ lð беÐ
80	Development of a Platform for Producing Recombinant Protein Components of Epitope Vaccines for the Prevention of COVID-19. Biochemistry (Moscow), 2021, 86, 1275-1287.	0.7	3
81	Mechanism of a COVID-19 nanoparticle vaccine candidate that elicits a broadly neutralizing antibody response to SARS-CoV-2 variants. Science Advances, 2021, 7, eabj3107.	4.7	23
82	Scientific rationale for developing potent RBD-based vaccines targeting COVID-19. Npj Vaccines, 2021, 6, 128.	2.9	102
83	Immunizations with diverse sarbecovirus receptor-binding domains elicit SARS-CoV-2 neutralizing antibodies against a conserved site of vulnerability. Immunity, 2021, 54, 2908-2921.e6.	6.6	35
84	Virus-like particles against infectious disease and cancer: guidance for the nano-architect. Current Opinion in Biotechnology, 2022, 73, 346-354.	3.3	14
85	Nanopartik $ ilde{A}^{1\!\!/}$ ler Aå $ ilde{Y}$ Ä \pm lar. Journal of Anatolian Environmental and Animal Sciences, $0,$, .	0.2	1
86	A Novel Double Mosaic Virus-like Particle-Based Vaccine against SARS-CoV-2 Incorporates Both Receptor Binding Motif (RBM) and Fusion Domain. Vaccines, 2021, 9, 1287.	2.1	10
87	Strategies for eliciting multiple lineages of broadly neutralizing antibodies to HIV by vaccination. Current Opinion in Virology, 2021, 51, 172-178.	2.6	13
88	Rationally Designed Immunogens Enable Immune Focusing Following SARS-CoV-2 Spike Imprinting. SSRN Electronic Journal, 0, , .	0.4	0
90	Cross-reactive antibodies after SARS-CoV-2 infection and vaccination. ELife, 2021, 10, .	2.8	63
91	VLP-Based COVID-19 Vaccines: An Adaptable Technology against the Threat of New Variants. Vaccines, 2021, 9, 1409.	2.1	22

#	Article	IF	Citations
92	Scalable, methanolâ€free manufacturing of the SARSâ€CoVâ€2 receptorâ€binding domain in engineered <i>Komagataella phaffii</i> . Biotechnology and Bioengineering, 2022, 119, 657-662.	1.7	17
93	Sustained Delivery of SARSâ€CoVâ€2 RBD Subunit Vaccine Using a High Affinity Injectable Hydrogel Scaffold. Advanced Healthcare Materials, 2022, 11, e2101714.	3.9	17
94	Current and future nanoparticle vaccines for COVID-19. EBioMedicine, 2021, 74, 103699.	2.7	57
95	Protein engineering strategies for rational immunogen design. Npj Vaccines, 2021, 6, 154.	2.9	26
96	A novel STING agonist-adjuvanted pan-sarbecovirus vaccine elicits potent and durable neutralizing antibody and T cell responses in mice, rabbits and NHPs. Cell Research, 2022, 32, 269-287.	5.7	54
97	Innovative vaccine approaches—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2022, 1511, 59-86.	1.8	5
98	SARS-CoV-2 breakthrough infections elicit potent, broad, and durable neutralizing antibody responses. Cell, 2022, 185, 872-880.e3.	13.5	165
99	Covalent coupling of Spike's receptor binding domain to a multimeric carrier produces a high immune response against SARS-CoV-2. Scientific Reports, 2022, 12, 692.	1.6	9
100	Immunization with synthetic SARS-CoV-2 S glycoprotein virus-like particles protects macaques from infection. Cell Reports Medicine, 2022, 3, 100528.	3.3	6
101	Rapid identification of neutralizing antibodies against SARS-CoV-2 variants by mRNA display. Cell Reports, 2022, 38, 110348.	2.9	14
102	Use of Nanoparticles to Combat COVID-19. Advances in Chemical and Materials Engineering Book Series, 2022, , 412-440.	0.2	0
103	Nanoparticle and virus-like particle vaccine approaches against SARS-CoV-2. Journal of Microbiology, 2022, 60, 335-346.	1.3	18
104	Developing pan- \hat{l}^2 -coronavirus vaccines against emerging SARS-CoV-2 variants of concern. Trends in Immunology, 2022, 43, 170-172.	2.9	25
105	Nucleic acid delivery of immune-focused SARS-CoV-2 nanoparticles drives rapid and potent immunogenicity capable of single-dose protection. Cell Reports, 2022, 38, 110318.	2.9	17
107	Advanced Materials for SARSâ€CoVâ€2 Vaccines. Advanced Materials, 2022, 34, e2107781.	11.1	25
109	Elicitation of potent SARS-CoV-2 neutralizing antibody responses through immunization with a versatile adenovirus-inspired multimerization platform. Molecular Therapy, 2022, 30, 1913-1925.	3.7	21
110	SARS-CoV-2 ferritin nanoparticle vaccines elicit broad SARS coronavirus immunogenicity. Cell Reports, 2021, 37, 110143.	2.9	94
113	Molecular basis of immune evasion by the Delta and Kappa SARS-CoV-2 variants. Science, 2021, 374, 1621-1626.	6.0	232

#	Article	IF	CITATIONS
114	Structural basis of SARS-CoV-2 Omicron immune evasion and receptor engagement. Science, 2022, 375, 864-868.	6.0	394
116	Design of a mutation-integrated trimeric RBD with broad protection against SARS-CoV-2. Cell Discovery, 2022, 8, 17.	3.1	23
117	Boosting immunity to Omicron. Nature Medicine, 2022, 28, 445-446.	15.2	29
119	A SARS-CoV-2 ferritin nanoparticle vaccine elicits protective immune responses in nonhuman primates. Science Translational Medicine, 2022, 14, .	5.8	73
120	Broad ultra-potent neutralization of SARS-CoV-2 variants by monoclonal antibodies specific to the tip of RBD. Cell Discovery, 2022, 8, 16.	3.1	18
122	Rationally designed immunogens enable immune focusing following SARS-CoV-2 spike imprinting. Cell Reports, 2022, 38, 110561.	2.9	16
123	A Coarse-Grained Model of Affinity Maturation Indicates the Importance of B-Cell Receptor Avidity in Epitope Subdominance. Frontiers in Immunology, 2022, 13, 816634.	2.2	2
125	SARS-CoV-2 receptor binding domain displayed on HBsAg virus–like particles elicits protective immunity in macaques. Science Advances, 2022, 8, eabl6015.	4.7	27
126	Broad anti–SARS-CoV-2 antibody immunity induced by heterologous ChAdOx1/mRNA-1273 vaccination. Science, 2022, 375, 1041-1047.	6.0	59
129	Architecture and antigenicity of the Nipah virus attachment glycoprotein. Science, 2022, 375, 1373-1378.	6.0	33
132	Vaccination with SARS-CoV-2 spike protein lacking glycan shields elicits enhanced protective responses in animal models. Science Translational Medicine, 2022, 14, eabm0899.	5.8	68
135	A Stabilized, Monomeric, Receptor Binding Domain Elicits High-Titer Neutralizing Antibodies Against All SARS-CoV-2 Variants of Concern. Frontiers in Immunology, 2021, 12, 765211.	2.2	16
136	Looking to the future: is a universal coronavirus vaccine feasible? Expert Review of Vaccines, 2022, 21, 277-280.	2.0	9
137	Protein-Based Nanoparticle Vaccines for SARS-CoV-2. International Journal of Molecular Sciences, 2021, 22, 13445.	1.8	12
138	Scope of SARS-CoV-2 variants, mutations, and vaccine technologies. The Egyptian Journal of Internal Medicine, 2022, 34, 34.	0.3	5
139	An antibody class with a common CDRH3 motif broadly neutralizes sarbecoviruses. Science Translational Medicine, 2022, 14, eabn6859.	5.8	31
140	Protein engineering responses to the COVID-19 pandemic. Current Opinion in Structural Biology, 2022, 74, 102385.	2.6	11
141	Structure of a Vaccine-Induced, Germline-Encoded Human Antibody Defines a Neutralizing Epitope on the SARS-CoV-2 Spike N-Terminal Domain. MBio, 2022, 13, e0358021.	1.8	12

#	Article	IF	CITATIONS
142	Engineering Self-Assembling Protein Nanoparticles for Therapeutic Delivery. Bioconjugate Chemistry, 2022, 33, 2018-2034.	1.8	28
143	Instructing durable humoral immunity for COVID-19 and other vaccinable diseases. Immunity, 2022, 55, 945-964.	6.6	32
144	Receptor-binding domain recombinant protein on alum-CpG induces broad protection against SARS-CoV-2 variants of concern. Vaccine, 2022, 40, 3655-3663.	1.7	21
145	Quadrivalent mosaic HexaPro-bearing nanoparticle vaccine protects against infection of SARS-CoV-2 variants. Nature Communications, 2022, 13, 2674.	5.8	26
146	Phage-like particle vaccines are highly immunogenic and protect against pathogenic coronavirus infection and disease. Npj Vaccines, 2022, 7, .	2.9	8
150	Targeted isolation of diverse human protective broadly neutralizing antibodies against SARS-like viruses. Nature Immunology, 2022, 23, 960-970.	7.0	39
151	Materials $\widehat{\in}$ based vaccines for infectious diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, .	3.3	4
152	Influenza Virus-like Particle-Based Hybrid Vaccine Containing RBD Induces Immunity against Influenza and SARS-CoV-2 Viruses. Vaccines, 2022, 10, 944.	2.1	5
153	Severe acute respiratory syndrome coronavirus 2 variants–Possibility of universal vaccine design: A review. Computational and Structural Biotechnology Journal, 2022, 20, 3533-3544.	1.9	3
154	Superimmunity by pan-sarbecovirus nanobodies. Cell Reports, 2022, 39, 111004.	2.9	13
155	Safety and immunogenicity of a hybrid-type vaccine booster in BBIBP-CorV recipients in a randomized phase 2 trial. Nature Communications, 2022, 13 , .	5.8	26
156	SpySwitch enables pH- or heat-responsive capture and release for plug-and-display nanoassembly. Nature Communications, 2022, 13, .	5.8	12
158	A broad and potent neutralization epitope in SARS-related coronaviruses. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	34
159	The humoral response and antibodies against SARS-CoV-2 infection. Nature Immunology, 2022, 23, 1008-1020.	7.0	84
160	Multiplexed LNP-mRNA vaccination against pathogenic coronavirus species. Cell Reports, 2022, 40, 111160.	2.9	9
161	Mosaic RBD nanoparticles protect against challenge by diverse sarbecoviruses in animal models. Science, 2022, 377, .	6.0	120
162	Vaccination with a bacterial peptide conjugated to SARS-CoV-2 receptor-binding domain accelerates immunity and protects against COVID-19. IScience, 2022, 25, 104719.	1.9	0
163	Nanocarriers based on bacterial membrane materials for cancer vaccine delivery. Nature Protocols, 2022, 17, 2240-2274.	5.5	42

#	Article	IF	CITATIONS
164	A mRNA Vaccine Encoding for a RBD 60-mer Nanoparticle Elicits Neutralizing Antibodies and Protective Immunity Against the SARS-CoV-2 Delta Variant in Transgenic K18-hACE2 Mice. Frontiers in Immunology, 0, 13, .	2.2	1
165	Omicron spike function and neutralizing activity elicited by a comprehensive panel of vaccines. Science, 2022, 377, 890-894.	6.0	142
166	SARS-CoV-2 S2–targeted vaccination elicits broadly neutralizing antibodies. Science Translational Medicine, 2022, 14, .	5.8	57
167	Vaccines against SARS-CoV-2 variants and future pandemics. Expert Review of Vaccines, 2022, 21, 1363-1376.	2.0	6
169	A mosaic-type trimeric RBD-based COVID-19 vaccine candidate induces potent neutralization against Omicron and other SARS-CoV-2 variants. ELife, 0, 11 , .	2.8	10
170	Humoral responses to the SARS-CoV-2 spike and receptor binding domain in context of pre-existing immunity confer broad sarbecovirus neutralization. Frontiers in Immunology, $0,13,.$	2.2	2
172	Development of robust, indigenous ELISA for detection of IgG antibodies against CoV-2ÂN and S proteins: mass screening. Applied Microbiology and Biotechnology, 0, , .	1.7	2
173	Broadly neutralizing antibodies to SARS-related viruses can be readily induced in rhesus macaques. Science Translational Medicine, 2022, 14, .	5 . 8	15
174	Modular capsid decoration boosts adenovirus vaccine-induced humoral immunity against SARS-CoV-2. Molecular Therapy, 2022, 30, 3639-3657.	3.7	6
177	Intranasal immunization with recombinant Vaccinia virus encoding trimeric SARS-CoV-2 spike receptor-binding domain induces neutralizing antibody. Vaccine, 2022, 40, 5757-5763.	1.7	5
178	A critical overview of current progress for COVID-19: development of vaccines, antiviralÂdrugs, and therapeutic antibodies. Journal of Biomedical Science, 2022, 29, .	2.6	64
179	Development of variantâ€proof severe acute respiratory syndrome coronavirus 2, panâ€sarbecovirus, and panâ€Î²â€coronavirus vaccines. Journal of Medical Virology, 2023, 95, .	2.5	12
181	COVID-19 vaccine update: vaccine effectiveness, SARS-CoV-2 variants, boosters, adverse effects, and immune correlates of protection. Journal of Biomedical Science, 2022, 29, .	2.6	77
182	Imprinted antibody responses against SARS-CoV-2 Omicron sublineages. Science, 2022, 378, 619-627.	6.0	117
183	Narrative review on century of respiratory pandemics from Spanish flu to COVID-19 and impact of nanotechnology on COVID-19 diagnosis and immune system boosting. Virology Journal, 2022, 19, .	1.4	7
184	Neutralizing monoclonal antibodies elicited by mosaic RBD nanoparticles bind conserved sarbecovirus epitopes. Immunity, 2022, 55, 2419-2435.e10.	6.6	23
186	SpyStapler-mediated assembly of nanoparticle vaccines. Nano Research, 0, , .	5.8	0
187	Computational design of vaccine immunogens. Current Opinion in Biotechnology, 2022, 78, 102821.	3.3	11

#	Article	IF	CITATIONS
188	SARS-CoV-2 spike conformation determines plasma neutralizing activity elicited by a wide panel of human vaccines. Science Immunology, 2022, 7, .	5.6	42
190	A potent, broadly protective vaccine against SARS-CoV-2 variants of concern. Npj Vaccines, 2022, 7, .	2.9	8
191	Success of nano-vaccines against COVID-19: a transformation in nanomedicine. Expert Review of Vaccines, 2022, 21, 1739-1761.	2.0	2
192	An epitope-enriched immunogen expands responses to a conserved viral site. Cell Reports, 2022, 41, 111628.	2.9	8
193	Multivalent S2-based vaccines provide broad protection against SARS-CoV-2 variants of concern and pangolin coronaviruses. EBioMedicine, 2022, 86, 104341.	2.7	20
194	The Pandemic is in Progress: Long Covid, Omicrons, Vaccination and Vaccines. Epidemiologiya I Vaktsinoprofilaktika, 2022, 21, 120-137.	0.2	2
195	Revealing the role of tunable amino acid residues in elastin-like polypeptides (ELPs)-mediated biomimetic silicification. International Journal of Biological Macromolecules, 2023, 227, 105-112.	3.6	1
196	Ferritin nanocages as efficient nanocarriers and promising platforms for COVID-19 and other vaccines development. Biochimica Et Biophysica Acta - General Subjects, 2023, 1867, 130288.	1.1	4
197	Stimulation of the immune system by a tumor antigen-bearing adenovirus-inspired VLP allows control of melanoma growth. Molecular Therapy - Methods and Clinical Development, 2023, 28, 76-89.	1.8	4
201	Induction of cross-neutralizing antibodies by a permuted hepatitis C virus glycoprotein nanoparticle vaccine candidate. Nature Communications, 2022, 13, .	5 . 8	18
202	Advances in Next-Generation Coronavirus Vaccines in Response to Future Virus Evolution. Vaccines, 2022, 10, 2035.	2.1	3
203	A modular and self-adjuvanted multivalent vaccine platform based on porcine circovirus virus-like nanoparticles. Journal of Nanobiotechnology, 2022, 20, .	4.2	6
204	Challenges and developments in universal vaccine design against SARS-CoV-2 variants. Npj Vaccines, 2022, 7, .	2.9	25
205	Application of nanomaterials against SARS-CoV-2: An emphasis on their usefulness against emerging variants of concern. Frontiers in Nanotechnology, 0, 4, .	2.4	2
206	Functionalizing DNA origami to investigate and interact with biological systems. Nature Reviews Materials, 2023, 8, 123-138.	23.3	39
208	Design and immunological evaluation of two-component protein nanoparticle vaccines for East Coast fever. Frontiers in Immunology, 0, 13 , .	2.2	3
209	Characterization of crossâ€reactive monoclonal antibodies against SARSâ€CoVâ€1 and SARSâ€CoVâ€2: Implication for rational design and development of panâ€sarbecovirus vaccines and neutralizing antibodies. Journal of Medical Virology, 2023, 95, .	2.5	1
210	Vaccination with S _{pan} , an antigen guided by SARS-CoV-2 S protein evolution, protects against challenge with viral variants in mice. Science Translational Medicine, 2023, 15, .	5.8	14

#	Article	IF	CITATIONS
211	Molecular engineering of a cryptic epitope in Spike RBD improves manufacturability and neutralizing breadth against SARS-CoV-2 variants. Vaccine, 2022, , .	1.7	1
213	Mosaic RBD nanoparticles induce intergenus cross-reactive antibodies and protect against SARS-CoV-2 challenge. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120,	3.3	9
214	Neutralizing Efficacy of Encapsulin Nanoparticles against SARS-CoV2 Variants of Concern. Viruses, 2023, 15, 346.	1.5	4
215	Structural basis for a conserved neutralization epitope on the receptor-binding domain of SARS-CoV-2. Nature Communications, 2023, 14 , .	5.8	8
217	Emerging technologies for COVID-19, diagnosis, prevention, and management., 2023,, 389-404.		1
218	Advanced Vaccine Design Strategies against SARS-CoV-2 and Emerging Variants. Bioengineering, 2023, 10, 148.	1.6	3
219	Human neutralizing antibodies to cold linear epitopes and subdomain 1 of the SARS-CoV-2 spike glycoprotein. Science Immunology, 2023, 8 , .	5 . 6	33
220	Viral immunity: Basic mechanisms and therapeutic applications—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2023, 1521, 32-45.	1.8	0
221	A research and development (R&D) roadmap for broadly protective coronavirus vaccines: A pandemic preparedness strategy. Vaccine, 2023, 41, 2101-2112.	1.7	6
222	Protein-based nano-vaccines against SARS-CoV-2: Current design strategies and advances of candidate vaccines. International Journal of Biological Macromolecules, 2023, 236, 123979.	3.6	4
223	Germline-targeting HIV-1 Env vaccination induces VRC01-class antibodies with rare insertions. Cell Reports Medicine, 2023, 4, 101003.	3.3	7
224	CD4 binding site immunogens elicit heterologous anti–HIV-1 neutralizing antibodies in transgenic and wild-type animals. Science Immunology, 2023, 8, .	5.6	8
225	Molecular superglue-mediated higher-order assembly of TRAIL variants with superior apoptosis induction and antitumor activity. Biomaterials, 2023, 295, 121994.	5.7	2
226	Engineered Norovirus-Derived Nanoparticles as a Plug-and-Play Cancer Vaccine Platform. ACS Nano, 2023, 17, 3412-3429.	7.3	8
227	Carbohydrate fatty acid monosulphate: oil-in-water adjuvant enhances SARS-CoV-2 RBD nanoparticle-induced immunogenicity and protection in mice. Npj Vaccines, 2023, 8, .	2.9	3
228	SARS-CoV-2 S Glycoprotein Stabilization Strategies. Viruses, 2023, 15, 558.	1.5	1
230	Mechanisms that promote the evolution of cross-reactive antibodies upon vaccination with designed influenza immunogens. Cell Reports, 2023, 42, 112160.	2.9	1
231	Design of a stabilized RBD enables potently neutralizing SARS-CoV-2 single-component nanoparticle vaccines. Cell Reports, 2023, 42, 112266.	2.9	6

#	Article	IF	CITATIONS
232	Siteâ€Specific Modification of Virusâ€Like Particles for Exogenous Tumor Antigen Display and Minimizing Preexisting Immunity. Small, 2023, 19, .	5.2	1
233	Improving the secretion of designed protein assemblies through negative design of cryptic transmembrane domains. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	6
234	The diversity of the glycan shield of sarbecoviruses related to SARS-CoV-2. Cell Reports, 2023, 42, 112307.	2.9	7
236	Effective Multivalent Oriented Presentation of Meningococcal NadA Antigen Trimers by Self-Assembling Ferritin Nanoparticles. International Journal of Molecular Sciences, 2023, 24, 6183.	1.8	3
237	A multivalent <i>Plasmodium falciparum</i> circumsporozoite proteinâ€based nanoparticle malaria vaccine elicits a robust and durable antibody response against the junctional epitope and the major repeats. Bioengineering and Translational Medicine, 2023, 8, .	3.9	0
238	Leveraging deep learning to improve vaccine design. Trends in Immunology, 2023, 44, 333-344.	2.9	3
239	Fc-mediated pan-sarbecovirus protection after alphavirus vector vaccination. Cell Reports, 2023, 42, 112326.	2.9	13
240	Modular adjuvant-free pan-HLA-DR-immunotargeting subunit vaccine against SARS-CoV-2 elicits broad sarbecovirus-neutralizing antibody responses. Cell Reports, 2023, 42, 112391.	2.9	1
241	De <i>Novo</i> Design of Polyhedral Protein Assemblies: Before and After the Al Revolution. ChemBioChem, 2023, 24, .	1.3	3
242	SARS-CoV-2 RBD Conjugated to Polyglucin, Spermidine, and dsRNA Elicits a Strong Immune Response in Mice. Vaccines, 2023, 11 , 808.	2.1	1
243	A ferritin-based COVID-19 nanoparticle vaccine that elicits robust, durable, broad-spectrum neutralizing antisera in non-human primates. Nature Communications, 2023, 14, .	5.8	21
244	ESCRT recruitment to SARS-CoV-2 spike induces virus-like particles that improve mRNA vaccines. Cell, 2023, 186, 2380-2391.e9.	13.5	9
245	Targetable elements in SARS-CoV-2 S2 subunit for the design of pan-coronavirus fusion inhibitors and vaccines. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	15
277	Immune imprinting and next-generation coronavirus vaccines. Nature Microbiology, 2023, 8, 1971-1985.	5.9	4
289	In search of a pan-coronavirus vaccine: next-generation vaccine design and immune mechanisms. , 2024, 21, 103-118.		4
293	Bringing immunofocusing into focus. Npj Vaccines, 2024, 9, .	2.9	1
302	Machine learning for functional protein design. Nature Biotechnology, 2024, 42, 216-228.	9.4	1