CITATION REPORT List of articles citing

DOI: 10.1021/acs.est.0c06834 Environmental Science & Emp; Technology, 2021, 55, 7113-712

Source: https://exaly.com/paper-pdf/79126581/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
26	Nitrous acid emission from soil bacteria and related environmental effect over the North China Plain. <i>Chemosphere</i> , 2022 , 287, 132034	8.4	O
25	Assessment of Updated Fuel-Based Emissions Inventories Over the Contiguous United States Using TROPOMI NO2 Retrievals. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2021JD035484	4.4	1
24	Improving surface PM 2.5 forecasts in the United States using an ensemble of chemical transport model outputs: 2. bias correction with satellite data for rural areas. <i>Journal of Geophysical Research D: Atmospheres</i> ,	4.4	
23	Cropland nitrogen dioxide emissions and effects on the ozone pollution in the North China plain. <i>Environmental Pollution</i> , 2021 , 294, 118617	9.3	3
22	Optimization and Evaluation of SO2 Emissions Based on WRF-Chem and 3DVAR Data Assimilation. <i>Remote Sensing</i> , 2022 , 14, 220	5	5
21	Quantifying urban, industrial, and background changes in NO<sub>2</sub> during the COVID-19 lockdown period based on TROPOMI satellite observations. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 4201-4236	6.8	2
20	Resolving and Predicting Neighborhood Vulnerability to Urban Heat and Air Pollution: Insights From a Pilot Project of Community Science <i>GeoHealth</i> , 2022 , 6, e2021GH000575	5	O
19	Assessment of background ozone concentrations in China and implications for using region-specific volatile organic compounds emission abatement to mitigate air pollution <i>Environmental Pollution</i> , 2022 , 119254	9.3	
18	Water-conscious management strategies reduce per-yield irrigation and soil emissions of CO2, N2O, and NO in high-temperature forage cropping systems. <i>Agriculture, Ecosystems and Environment</i> , 2022 , 332, 107944	5.7	1
17	Synergistic effects of biogenic volatile organic compounds and soil nitric oxide emissions on summertime ozone formation in China <i>Science of the Total Environment</i> , 2022 , 154218	10.2	
16	Responses of Photochemical Air Pollution in California's San Joaquin Valley to Spatially and Temporally Resolved Changes in Precursor Emissions <i>Environmental Science & Environmental Science & Env</i>	10.3	
15	Direct Retrieval of NO2 Vertical Columns from UV-Vis (390-495 nm) Spectral Radiances Using a Neural Network. <i>Journal of Remote Sensing</i> , 2022 , 2022, 1-17		О
14	The excellent photocatalytic NO removal performance relates to the synergistic effect between the prepositive NaOH solution and the g-CN photocatalysis <i>Environmental Research</i> , 2022 , 212, 11340!	₅ 7.9	О
13	Integrated Modeling of U.S. Agricultural Soil Emissions of Reactive Nitrogen and Associated Impacts on Air Pollution, Health, and Climate. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	O
12	Changes in the Relative Importance of Biogenic Isoprene and Soil NOx Emissions on Ozone Concentrations in Nonattainment Areas of the United States. <i>Journal of Geophysical Research D: Atmospheres</i> , 2022 , 127,	4.4	1
11	Comparison and evaluation of updates to WRF-Chem (v3.9) biogenic emissions using MEGAN. 2022 , 15, 6311-6339		
10	Insight into the Overlooked Photochemical Decomposition of Atmospheric Surface Nitrates Triggered by Visible Light.		

CITATION REPORT

9	Insight into the Overlooked Photochemical Decomposition of Atmospheric Surface Nitrates Triggered by Visible Light.	0
8	Multisource Remote Sensing Based Estimation of Soil NO X Emissions from Fertilized Cropland at High-resolution: Spatio-temporal Patterns and Impacts.	O
7	Vertical Differences of Nitrate Sources in Urban Boundary Layer Based on Tower Measurements.	O
6	Urgency of controlling agricultural nitrogen sources to alleviate summertime air pollution in the North China Plain. 2023 , 311, 137124	O
5	Precipitation legacies amplify ecosystem nitrogen losses from nitric oxide emissions in a PinyonIluniper dryland.	О
4	Tropospheric ozone and its natural precursors impacted by climatic changes in emission and dynamics. 10,	O
3	Biogenic isoprene emissions, dry deposition velocity, and surface ozone concentration during summer droughts, heatwaves, and normal conditions in southwestern Europe. 2023 , 23, 1043-1071	O
2	Impacts of Agricultural Soil NO x Emissions on O 3 Over Mainland China. 2023 , 128,	O
1	Sensitivity of Modeled Soil NOx Emissions to Soil Moisture. 2023 , 128,	0