C–H Activation: Toward Sustainability and Applicatio

ACS Central Science 7, 245-261 DOI: 10.1021/acscentsci.0c01413

Citation Report

#	Article	IF	CITATIONS
1	Green strategies for transition metal-catalyzed C–H activation in molecular syntheses. Organic Chemistry Frontiers, 2021, 8, 4886-4913.	4.5	59
2	C–H bond functionalization by high-valent cobalt catalysis: current progress, challenges and future perspectives. Chemical Communications, 2021, 57, 10827-10841.	4.1	49
3	The emergence of the C–H functionalization strategy in medicinal chemistry and drug discovery. Chemical Communications, 2021, 57, 10842-10866.	4.1	52
4	Advancements in multifunctional manganese complexes for catalytic hydrogen transfer reactions. Chemical Communications, 2021, 57, 8534-8549.	4.1	41
5	Ethanol: Unlocking an Abundant Renewable C 2 â€Feedstock for Catalytic Enantioselective Câ^'C Coupling. Angewandte Chemie, 2021, 133, 10636-10640.	2.0	0
6	Construction of Highly Functionalized Xanthones via Rh-Catalyzed Cascade C–H Activation/ <i>O</i> -Annulation. Organic Letters, 2021, 23, 2465-2470.	4.6	22
7	Ethanol: Unlocking an Abundant Renewable C 2 â€Feedstock for Catalytic Enantioselective Câ^'C Coupling. Angewandte Chemie - International Edition, 2021, 60, 10542-10546.	13.8	14
8	Synthesis of Bidentate Nitrogen Ligands by Rh-Catalyzed C–H Annulation and Their Application to Pd-Catalyzed Aerobic C–H Alkenylation. Organic Letters, 2021, 23, 3657-3662.	4.6	24
9	Rh(III)-Catalyzed C–H Activation/[3 + 2] Annulation of <i>N</i> -Phenoxyacetamides via Carbooxygenation of 1,3-Dienes. Organic Letters, 2021, 23, 3844-3849.	4.6	16
10	Traceless Directing Groups in Sustainable Metal-Catalyzed C–H Activation. Catalysts, 2021, 11, 554.	3.5	23
11	MIDA-directed meta-selective Câ [^] 'H functionalizations. Trends in Chemistry, 2021, 3, 512-513.	8.5	0
12	Metalâ€Catalyzed C(sp ²)â^H Functionalization Processes of Phenylalanine―and Tyrosineâ€Containing Peptides. European Journal of Inorganic Chemistry, 2021, 2021, 2928-2941.	2.0	20
13	Cobalt-Catalyzed C–H Activation and [3 + 2] Annulation with Allenes: Diastereoselective Synthesis of Indane Derivatives. Organic Letters, 2021, 23, 5018-5023.	4.6	17
14	Metal Nanoparticles as Sustainable Tools for C–N Bond Formation via C–H Activation. Molecules, 2021, 26, 4106.	3.8	8
15	Ru(II)-Catalyzed Controlled Cross-Dehydrogenative Coupling of Benzamides with Activated Olefins via Weakly Coordinating Primary Amides. Journal of Organic Chemistry, 2021, 86, 9744-9754.	3.2	10
16	Ruâ€Catalyzed C(sp 2)â~'H Bond Arylation of Benzamides Bearing a Novel 4â€Aminoantipyrine as a Directing Group. European Journal of Organic Chemistry, 2021, 2021, 3598-3603. 	2.4	0
17	Cobalt(III)-Catalyzed C-6 Alkenylation of 2-Pyridones by Using Terminal Alkyne with High Regioselectivity. Journal of Organic Chemistry, 2021, 86, 9444-9454.	3.2	11
18	Infrared Irradiationâ€Assisted Solventâ€Free Pdâ€Catalyzed (Hetero)arylâ€aryl Coupling via Câ^'H Bond Activation. ChemSusChem, 2021, 14, 3391-3401.	6.8	15

#	Article	IF	CITATIONS
19	Dual Photoredox/Cobaloxime Catalysis for Cross-Dehydrogenative α-Heteroarylation of Amines. Organic Letters, 2021, 23, 5378-5382.	4.6	9
20	C–H Bond Functionalization of Amines: A Graphical Overview of Diverse Methods. SynOpen, 2021, 05, 173-228.	1.7	40
21	Nucleophilic C–H Etherification of Heteroarenes Enabled by Base-Catalyzed Halogen Transfer. Journal of the American Chemical Society, 2021, 143, 12480-12486.	13.7	14
22	Copper-Catalyzed Intermolecular Functionalization of Unactivated C(sp ³)–H Bonds and Aliphatic Carboxylic Acids. Journal of the American Chemical Society, 2021, 143, 14667-14675.	13.7	36
23	Modern strategies for C–H functionalization of heteroarenes with alternative coupling partners. CheM, 2021, 7, 2585-2634.	11.7	63
24	Native Amine-Directed ortho-C–H Halogenation and Acetoxylation /Condensation of Benzylamines. Synthesis, 0, , .	2.3	5
25	Pdâ€Catalyzed Cyclization of Alkynyl Norbornene Derivatives for the Synthesis of Benzofused Heteroarenes. Advanced Synthesis and Catalysis, 2021, 363, 4883-4888.	4.3	9
26	Facile Synthesis of Alkylidene Phthalides by Rhodiumâ€Catalyzed Domino Câ€H Acylation/Annulation of Benzamides with Aliphatic Carboxylic Acids. Chemistry - A European Journal, 2021, 27, 15628-15633.	3.3	1
27	TFAâ€Prompted/Rh(III)â€Catalysed Chemoselective C3―or C2â€H Functionalization of Indoles with Methylenecyclopropanes. European Journal of Organic Chemistry, 2021, 2021, 5507.	2.4	5
28	Selective Electrochemical Oxygenation of Alkylarenes to Carbonyls. Organic Letters, 2021, 23, 7445-7449.	4.6	19
29	Palladium-catalyzed cross-dehydrogenative-coupling of nitro-substituted internal alkenes with terminal alkenes. Tetrahedron Letters, 2021, 82, 153396.	1.4	3
30	Some trends in sustainable catalysis development. Nachrichten Aus Der Chemie, 2021, 69, 84-88.	0.0	Ο
31	Bromination and C–C Cross-Coupling Reactions for the C–H Functionalization of Iridium(III) Emitters. Organometallics, 2021, 40, 3211-3222.	2.3	6
32	Cobalt(III)-Catalyzed Diastereo- and Enantioselective Three-Component C–H Functionalization. ACS Catalysis, 2021, 11, 11938-11944.	11.2	44
33	Late-Stage C–H Acylation of Tyrosine-Containing Oligopeptides with Alcohols. Organic Letters, 2021, 23, 7279-7284.	4.6	15
34	Synthesis of Conjugated Polymers via Transition Metal Catalysed Câ~'H Bond Activation. Chemistry - an Asian Journal, 2021, 16, 2896-2919.	3.3	12
35	Selective Benzylic CHâ€Borylations by Tandem Cobalt Catalysis. Angewandte Chemie - International Edition, 2021, , .	13.8	10
36	Selective Benzylic CHâ€Borylations by Tandem Cobalt Catalysis. Angewandte Chemie, 2022, 134, .	2.0	3

#	Article	IF	CITATIONS
37	Influence of the amine donor on hybrid guanidine-stabilized Bis(μ-oxido) dicopper(III) complexes and their tyrosinase-like oxygenation activity towards polycyclic aromatic alcohols. Journal of Inorganic Biochemistry, 2021, 224, 111541.	3.5	7
38	Green chemistry meets medicinal chemistry: a perspective on modern metal-free late-stage functionalization reactions. Chemical Society Reviews, 2021, 50, 10955-10982.	38.1	75
39	Sterically controlled C–H alkenylation of pyrroles and thiophenes. Chemical Communications, 2021, 57, 11791-11794.	4.1	10
40	Rutheniumâ€Catalyzed Sulfoalkenylation of Acetanilides and Dualâ€Use of the Catalyst Directing Group. European Journal of Organic Chemistry, 2021, 2021, 5497-5506.	2.4	1
41	Furoxan Incorporation into C–H Bonds Enabling Nitrogen-Containing Functional Group Installation into the Same. Journal of Organic Chemistry, 2021, 86, 15807-15817.	3.2	4
42	Rhodium-Catalyzed Annulation of Phenacyl Ammonium Salts with Propargylic Alcohols via a Sequential Dual C–H and a C–C Bond Activation: Modular Entry to Diverse Isochromenones. Organic Letters, 2021, 23, 7888-7893.	4.6	18
43	Enantioselective Cross-Coupling of Electron-Deficient Alkenes via Ir-Catalyzed Vinylic sp ² C–H Alkylation. Organic Letters, 2021, 23, 8158-8162.	4.6	14
44	Rhodaâ€Electrocatalyzed Câ^'H Methylation and Paired Electrocatalyzed Câ^'H Ethylation and Propylation. Chemistry - A European Journal, 2022, 28, .	3.3	18
45	Synthesis of functionalized diarylbenzofurans via Ru-catalyzed C–H activation and cyclization under air: rapid access to the polycyclic scaffold of diptoindonesin G. Organic Chemistry Frontiers, 0, , .	4.5	2
46	Metal-free visible-light-promoted C(sp ³)–H functionalization of aliphatic cyclic ethers using trace O ₂ . Green Chemistry, 2021, 23, 9454-9459.	9.0	24
47	C–H Bond Activation Facilitated by Bis(phosphinoamide) Heterobimetallic Zr/Co Complexes. Organometallics, 2021, 40, 3689-3696.	2.3	4
48	Azolium Control of the Osmium-Promoted Aromatic C–H Bond Activation in 1,3-Disubstituted Substrates. Organometallics, 2021, 40, 3979-3991.	2.3	2
49	Effect of Pincer Methylation on the Selectivity and Activity in (PNP)Cobalt-Catalyzed C(sp ²)–H Borylation. Organometallics, 2021, 40, 3766-3774.	2.3	7
50	Ortho Câ^'H Functionalization of 2â€Arylimidazo[1,2―a]pyridines. Chemical Record, 2021, , .	5.8	12
51	Role of Additives in Transition Metal Catalyzed C–H Bond Activation Reactions: A Computational Perspective. Topics in Catalysis, 2022, 65, 141-164.	2.8	10
52	Ir-catalyzed proximal and distal Câ€"H borylation of arenes. Chemical Communications, 2021, 57, 13059-13074.	4.1	44
53	Cobalt-catalyzed highly diastereoselective [3 + 2] carboannulation reactions: facile access to substituted indane derivatives. Chemical Communications, 2022, 58, 1386-1389.	4.1	4
54	Synthesis of Natural Products by Câ^'H Functionalization of Heterocycless. Chemistry - A European Journal, 2022, 28, .	3.3	24

#	Article	IF	CITATIONS
55	Sustainable C–H functionalization under ball-milling, microwave-irradiation and aqueous media. Green Chemistry, 2022, 24, 2296-2320.	9.0	20
56	Nickel and Palladium Catalysis: Stronger Demand than Ever. ACS Catalysis, 2022, 12, 1180-1200.	11.2	77
57	Overcoming the Challenges toward Selective C(6)–H Functionalization of 2-Pyridone with Maleimide through Mn(I)-Catalyst: Easy Access to All-Carbon Quaternary Center. Organic Letters, 2022, 24, 848-852.	4.6	9
58	Synthesis of Benzylidenesuccinates through Rhodium(III)â€Catalyzed Câ€H Alkenylation with Itaconate. Asian Journal of Organic Chemistry, 0, , .	2.7	4
59	Mechanistically Guided Workflow for Relating Complex Reactive Site Topologies to Catalyst Performance in C–H Functionalization Reactions. Journal of the American Chemical Society, 2022, 144, 1881-1898.	13.7	15
60	One-step synthesis of indolizino[3,4,5- <i>ab</i>]isoindoles by manganese(<scp>i</scp>)-catalyzed C–H activation: structural studies and photophysical properties. Organic and Biomolecular Chemistry, 2022, 20, 796-800.	2.8	4
61	C(sp ³)â^'H Arylation Promoted by a Heterogeneous Palladiumâ€Nâ€Heterocyclic Carbene Complex in Batch and Continuous Flow. ChemSusChem, 2022, 15, .	6.8	11
62	Recent advances in transition-metal catalyzed directed C–H functionalization with fluorinated building blocks. Organic Chemistry Frontiers, 2022, 9, 1742-1775.	4.5	23
63	Cobalt-Catalyzed Enantioselective C–H Arylation of Indoles. Journal of the American Chemical Society, 2022, 144, 798-806.	13.7	77
64	Introduction to Spatial Anion Control for Direct C–H Arylation. Synlett, 2022, 33, 503-512.	1.8	2
65	DDQ-mediated oxidative coupling reaction of N,N-dimethyl enaminones with cycloheptatriene. Tetrahedron Letters, 2022, 90, 153609.	1.4	2
66	Green Chemistry in the Synthesis of Pharmaceuticals. Chemical Reviews, 2022, 122, 3637-3710.	47.7	155
67	Amine-directed Mizoroki–Heck arylation of free allylamines. Organic Chemistry Frontiers, 2022, 9, 1967-1974.	4.5	3
68	Native carboxyl group-assisted C–H acetoxylation of hydrocinnamic and phenylacetic acids. Chemical Communications, 2022, 58, 4993-4996.	4.1	3
69	Specific assembly of dihydrobenzofuran frameworks <i>via</i> Rh(<scp>iii</scp>)-catalysed C–H coupling of <i>N</i> -phenoxyacetamides with 2-alkenylphenols. New Journal of Chemistry, 2022, 46, 5705-5711.	2.8	3
70	Replacement of Less-Preferred Dipolar Aprotic and Ethereal Solvents in Synthetic Organic Chemistry with More Sustainable Alternatives. Chemical Reviews, 2022, 122, 6749-6794.	47.7	58
71	Redox-Neutral Ru(0)-Catalyzed Alkenylation of 2-Carboxaldimine-heterocyclopentadienes. Journal of Organic Chemistry, 2022, 87, 4640-4648.	3.2	10
72	Development of Cobalt Catalysts for the <i>meta</i> -Selective C(sp ²)–H Borylation of Fluorinated Arenes. Journal of the American Chemical Society, 2022, 144, 6465-6474.	13.7	21

#	Article	IF	CITATIONS
73	Circular Discovery in Small Molecule and Conjugated Polymer Synthetic Methodology. Journal of the American Chemical Society, 2022, 144, 6123-6135.	13.7	25
74	C–H deuteration of organic compounds and potential drug candidates. Chemical Society Reviews, 2022, 51, 3123-3163.	38.1	85
75	Recent progress in rare-earth metal-catalyzed sp ² and sp ³ C–H functionalization to construct C–C and C–heteroelement bonds. Organic Chemistry Frontiers, 2022, 9, 3102-3141.	4.5	20
76	Achiral Cp*Rh(III)/Chiral Lewis Base Cooperative Catalysis for Enantioselective Cyclization via C–H Activation. Journal of the American Chemical Society, 2022, 144, 7058-7065.	13.7	24
77	Insights and Activation Energy Surface of the Dehydrogenation of C ₂ H _x O Species in Ethanol Oxidation Reaction on Ir(100). ChemPhysChem, 2022, 23, .	2.1	3
78	Mechanochemical Ruthenium-Catalyzed O <i>rtho</i> -Alkenylation of <i>N</i> -Heteroaryl Arenes with Alkynes under Ball-Milling Conditions. Journal of Organic Chemistry, 2022, 87, 5994-6005.	3.2	8
79	A Germanium Catalyst Accelerates the Photoredox α-C(sp ³)–H Alkylation of Primary Amines. Organic Letters, 2022, 24, 3325-3330.	4.6	3
80	Polyarylquinone Synthesis by Relayed Dehydrogenative [2 + 2 + 2] Cycloaddition. ACS Catalysis, 2022, 12, 6227-6237.	11.2	10
81	Chemo- and regioselective benzylic C(sp3)–H oxidation bridging the gap between hetero- and homogeneous copper catalysis. IScience, 2022, 25, 104341.	4.1	4
82	Câ^'H Methylation Using Sustainable Approaches. Catalysts, 2022, 12, 510.	3.5	4
83	Divergent Regioselective Csp ² –H Difluoromethylation of Aromatic Amines Enabled by Nickel Catalysis. Organic Letters, 2022, 24, 3549-3554.	4.6	10
84	Different Chiral Ligands Assisted Enantioselective C-H Functionalization with Transition-Metal Catalysts. Catalysts, 2022, 12, 537.	3.5	2
85	Construction of Pyrrolocoumarin Cores through Double Câ€H Annulation Cascade. European Journal of Organic Chemistry, 0, , .	2.4	5
86	A jackpot C–H activation protocol using simple ruthenium catalyst in deep eutectic solvents. Green Chemistry, 2022, 24, 4941-4951.	9.0	9
88	C3–H Silylation of Furfural Derivatives: Direct Access to a Versatile Synthetic Platform Derived from Biomass. Asian Journal of Organic Chemistry, 0, , .	2.7	3
89	Palladium-Catalyzed Direct C–H Alkenylation with Enol Pivalates Proceeds via Reversible C–O Oxidative Addition to Pd(0). ACS Catalysis, 2022, 12, 6997-7003.	11.2	8
90	Catalyst- and Oxidizing Reagent-Free Electrochemical Benzylic C(sp ³)–H Oxidation of Phenol Derivatives. Journal of Organic Chemistry, 2022, 87, 7806-7817.	3.2	15
91	An Artificial Metalloenzyme Based on a Copper Heteroscorpionate Enables sp ³ C–H Functionalization via Intramolecular Carbene Insertion. Journal of the American Chemical Society, 2022_144_11676-11684	13.7	11

		CITATION REPORT	
#	Article	IF	Citations
92	Pyridine Nucleus as a Directing Group for Metal-Based Câ \in "H Bond Activation. , 0, , .		0
93	Photoinduced carbamoylation reactions: unlocking new reactivities towards amide synthesis. Chemical Communications, 2022, 58, 8322-8339.	4.1	11
94	Unlocking C–H Functionalization at Room Temperature via a Light-Mediated Protodemetalation Reaction. ACS Catalysis, 2022, 12, 8229-8236.	11.2	7
95	Synthesis, Attributes and Defect Control of Defect-Engineered Materials as Superior Adsorbents for Aqueous Species: A Review. Journal of Inorganic and Organometallic Polymers and Materials, 0, , .	or 3.7	2
96	Synthesis and Mechanistic Investigation of Bipyrazolo[1,5- <i>a</i>]pyridines <i>via</i> Palladium-Catalyzed Cross-Dehydrogenative Coupling of Pyrazolo[1,5- <i>a</i>]pyridines. Journal o Organic Chemistry, 2022, 87, 9851-9863.	of 3.2	5
97	Triple Regioselective Functionalization of Cationic [4]Helicenes via Iridium atalyzed Borylation Suzuki Cross oupling Reactivity. Chemistry - A European Journal, 2022, 28, .	and 3.3	5
98	Binding of Dual-Function Hybridized Metal – Organic Capsules to Enzymes for Cascade Catalysis. Jacs Au, 0, , .	7.9	2
99	Redesigning Enzymes for Biocatalysis: Exploiting Structural Understanding for Improved Selectivit Frontiers in Molecular Biosciences, 0, 9, .	y. 3.5	8
100	Chemically Driven Rotatory Molecular Machines. Angewandte Chemie, 2022, 134, .	2.0	6
101	<i>Ortho</i> Câ^'H Functionalizations of 2â€Arylâ€2 <i>H</i> â€Indazoles. Chemical Record, 2022,	22, . 5.8	3
102	Diverse reactivity of alkynes in C–H activation reactions. Chemical Communications, 2022, 58, 10262-10289.	4.1	12
103	Chemically Driven Rotatory Molecular Machines. Angewandte Chemie - International Edition, 2022	2, 61, . 13.8	27
104	Rhodium-Promoted C–H Bond Activation of Quinoline, Methylquinolines, and Related Mono-Substituted Quinolines. Organometallics, 2022, 41, 2317-2326.	2.3	2
105	Diversification of (<i>E,E</i>)-1,6-Dioxo-2,4-Dienes for the Synthesis of (+)-Aspicillin, Isolaurepan, a β-Parinaric Acid. Journal of Organic Chemistry, 2022, 87, 11021-11030.	and 3.2	5
106	Câ^'H Activation Based Functionalization of Furfural Derivatives. European Journal of Organic Chemistry, 2022, 2022, .	2.4	8
107	Can Second Coordination Sphere and Long-Range Interactions Modulate Hydrogen Atom Transfer Non-Heme Fe(II)-Dependent Histone Demethylase?. Jacs Au, 2022, 2, 2169-2186.	in a 7.9	11
108	Substrateâ€Rhodium Cooperativity in Photoinduced <i>ortho</i> â€Alkynylation of Arenes. Angew Chemie - International Edition, 2022, 61, .	andte 13.8	5
109	Substrateâ€Rhodium Cooperativity in Photoinduced <i>ortho</i> â€Alkynylation of Arenes. Angew Chemie, 2022, 134,	andte	1

#	Article	IF	Citations
110	Practical and sustainable preparation of pyrrolo[2,3- <i>b</i>]indoles by Cu/Fe catalyzed intramolecular C(sp ²)–H amination. Green Chemistry, 2022, 24, 7340-7345.	9.0	4
111	Cobalt-catalyzed C(sp ²)–H bond imination of phenylalanine derivatives. Chemical Communications, 2022, 58, 9754-9757.	4.1	3
112	Palladium-catalysed C _{sp³} –H functionalisation of unactivated 8-aminoquinoline amides in deep eutectic solvents. Organic and Biomolecular Chemistry, 2022, 20, 7071-7075.	2.8	5
113	Synthesis of alpha-pyrones and chromen-2-ones by transition-metal catalyzed annulations of sulfoxonium and iodonium ylides with <i>cis</i> stilbene acids. New Journal of Chemistry, 0, , .	2.8	6
114	Recyclable rhodium-catalyzed C–H activation/[4 + 2] annulation with unconventional regioselectivity at ambient temperature: experimental development and mechanistic insight. Green Chemistry, 2022, 24, 7012-7021.	9.0	9
115	Transition-metal-catalyzed <i>ortho</i> C–H functionalization of 2-arylquinoxalines. Organic and Biomolecular Chemistry, 2022, 20, 7361-7376.	2.8	6
116	Rhodium(III)-Catalyzed Triple Aryl/Alkenyl C–H Bond Activation of Aryl Enaminones to Access Naphtho[1,8- <i>bc</i>]pyrans. Organic Letters, 2022, 24, 7123-7127.	4.6	10
117	Exploiting photoredox catalysis for carbohydrate modification through C–H and C–C bond activation. Nature Reviews Chemistry, 2022, 6, 782-805.	30.2	18
118	Temperatureâ€Controlled Selective Mono―vs. Di― <i>ortho</i> â€Arylation for the Synthesis of Arylhydrazine Derivatives. Chemistry - A European Journal, 0, , .	3.3	0
119	Recent Advances in Room-Temperature Direct C–H Arylation Methodologies. Synthesis, 2023, 55, 1-26.	2.3	7
120	Iridium-Catalyzed Branch-Selective and Enantioselective Hydroalkenylation of α-Olefins through C–H Cleavage of Enamides. Journal of the American Chemical Society, 2022, 144, 17351-17358.	13.7	14
121	Palladium atalyzed Cascade Reaction in Water to Imidazo[1,2â€ <i>a</i>]pyridazines as Switchable DSEgens, AlEgens, and ACQgens**. Chemistry - A European Journal, 2022, 28, .	3.3	8
122	The C-H Bond Activation Triggered by Subsurface Mo Dopant on MgO Catalyst in Oxidative Coupling of Methane. Catalysts, 2022, 12, 1083.	3.5	1
124	Rh(III)-catalyzed twofold unsymmetrical C H alkenylation-annulation/amidation reaction enabled delivery of diverse furoquinazolinones. Tetrahedron Letters, 2022, 108, 154141.	1.4	1
126	Remote Editing of Stacked Aromatic Assemblies for Heteroannular Câ^'H Functionalization by a Palladium Switch between Aromatic Rings. Angewandte Chemie - International Edition, 2022, 61, .	13.8	5
127	Remote Editing of Stacked Aromatic Assemblies for Heteroannular Câ^'H Functionalization by a Palladium Switch between Aromatic Rings. Angewandte Chemie, 0, , .	2.0	0
128	Visibleâ€Light Mediated Energy Transfer Enables the Synthesis of βâ€Lactams via Intramolecular Hydrogen Atom Transfer. Angewandte Chemie, 0, , .	2.0	1
133	Postâ€Modification of Amino Acids and Peptides for the Rapid Synthesis of <i>C</i> â€Glycoamino Acids and <i>C</i> â€Glycopeptides. European Journal of Organic Chemistry, 2022, 2022, .	2.4	4

ARTICLE IF CITATIONS Visibleâ€Lightâ€Mediated Energy Transfer Enables the Synthesis of βâ€Lactams via Intramolecular Hydrogen 137 13.8 10 Atom Transfer. Angewandte Chemie - International Edition, 2022, 61, . Cobalt-catalysed acyl silane directed <i>ortho</i> Câ€"H functionalisation of benzoyl silanes. Chemical 141 4.1 Communications, 2022, 58, 12604-12607. 142 9.0 3 functionalizations. Green Chemistry, 2022, 24, 9094-9100. Recent Progress in Transition Metal-Catalyzed Câ€"H Bond Activation of <i>N</i>>Aryl Phthalazinones. 143 1.3 Chinese Journal of Organic Chemistry, 2022, 42, 2682. Regioselective Dichotomy in Ru(II)-Catalyzed Câ€"H Annulation of Aryl Pyrazolidinones with 1,3-Diynes. 144 3.2 3 Journal of Organic Chemistry, 2022, 87, 14103-14114. Native Amideâ€Directed C(sp3)â€"H Amidation Enabled by Electronâ€Deficient Rh(III) Catalyst and 13.8 Electronâ€Deficient 2â€Pyridone Ligand. Angewandte Chemie - International Edition, 0, , . Native Amideâ€Directed C(sp3)â€"H Amidation Enabled by Electronâ€Deficient Rh(III) Catalyst and 146 2.0 0 Electronâ€Deficient 2â€Pyridone Ligand. Angewandte Chemie, 0, , . In Situ Quench Reactions of Enantioenriched Secondary Alkyllithium Reagents in Batch and 13.8 Continuous Flow Using an I/Liâ€Exchange. Angewandté Chémie - International Edition, 2023, 62, . Electrochemical Rhodium-Catalyzed Câ€"H Cyclodimerization of Alkynes to Access Diverse 148 Functionalized Naphthalenes: Involvement of Rh^{IV/V} and Rh^I Dual Catalysis. 3 4.6 Organic Letters, 2022, 24, 7784-7789. In situ Quenchreaktionen von enantiomerenangereicherten sekundÄren Alkyllithiumreagenzien im Kolben und im kontinuierlichen Durchfluss mittels eines I/Liâ€Austausch. Angewandte Chemie, 2023, 135, . Protocol for chemo- and regioselective C(sp3)â€"H activation using a heterogeneous copper 150 0 1.2 powder-catalyzed reaction. STAR Protocols, 2022, 3, 101781. Rh(III)-catalysed site-selective alkylation of Î²-carbolines/isoquinolines and tandem C H/C N functionalization to construct indolizine-indole frameworks. Molecular Catalysis, 2022, 533, 112783. Synthesis of naphthalene-substituted aromatic esters <i>via</i> Rh(<scp>)ii</scp>)-catalyzed Câ€"H bond 152 4.1 2 naphthylation and cascade directing group transformation. Chemical Communications, Ó, , . Transition metal-catalyzed double C_{vinyl}–H bond activation: synthesis of conjugated dienes. Organic and Biomolecular Chemistry, 2022, 20, 9522-9588. 2.8 An asymmetric metal-templated route to amino acids with an isoquinolone core<i>via</i> 154 Rh(<scp>iii</scp>)-catalyzed coupling of aryl hydroxamates with chiral propargylglycine 2.8 4 Ni(<scp>ii</scp>) complexes. Organic and Biomolecular Chemistry, 2022, 20, 9385-9391. Introducing Ion Mobility Mass Spectrometry to Identify Site-Selective C–H Bond Activation in N-Heterocyclic Carbene Metal Complexes. Journal of the American Society for Mass Spectrometry, 2022, 33, 2291-2300. Rhodium(III)â€catalyzed Construction of Dâ€A Type Polyheteroaromatics with Fluorinated 156 2.7 2 Benzothiadiazole as a Modifiable Acceptor Block. Asian Journal of Organic Chemistry, 0, , . Selective functionalization of benzylic C(sp3)–H bonds to synthesize complex molecules. CheM, 2022, 11.7 8, 3175-3201.

#	Article	IF	CITATIONS
158	Straightforward preparation of Ca-bentonite/polymer nanocomposite by confining salt-resistant copolymers into montmorillonite interlayers. Polymer, 2022, 263, 125519.	3.8	1
159	Progress in copper-catalysed/mediated intramolecular dehydrogenative coupling. Organic and Biomolecular Chemistry, 2023, 21, 237-251.	2.8	3
160	CuxPd1-xO nanoparticle-reduced graphene oxide nanocomposite catalyzed direct ortho-C–H acylation of 2-aryl pyridines. Catalysis Communications, 2023, 174, 106591.	3.3	0
161	Manganese-catalyzed hydroarylation of multiple bonds. Organic and Biomolecular Chemistry, 2023, 21, 441-464.	2.8	4
165	Photoelectrochemical Câ^'H Activation Through a Quinacridone Dye Enabling Protonâ€Coupled Electron Transfer. ChemSusChem, 2023, 16, .	6.8	4
166	Past, Present, and Future: A Changing Paradigm for Process Chemistry. ACS Symposium Series, 0, , 333-355.	0.5	1
167	Nâ€Chlorosuccinimide Mediated Regioselective Sulfenylation and Halogenation of 4 <i>H</i> â€Pyrido[1,2â€ <i>a</i>]pyrimidinâ€4â€ones at Room Temperature. ChemistrySelect, 2022, 7, .	1.5	1
168	Orthogonal Arylation of a Dieneâ€Sulfonamide Using Cationic Transition Metal Catalysts. European Journal of Organic Chemistry, 2022, 2022, .	2.4	0
169	Metal and Metal Oxide Nanoparticles Catalyzed C–H Activation for C–O and C–X (X = Halogen, B, P, S,) Tj	ET <u>Qq</u> 0 0	0 rgBT /Overle
170	Synergistic Visible Light and Pd-Catalyzed C–H Alkylation of 1-Naphthylamines with α-Diazoesters. Journal of Organic Chemistry, 2023, 88, 640-646.	3.2	6
171	Accessing Diverse Azole Carboxylic Acid Building Blocks via Mild C–H Carboxylation: Parallel, One-Pot Amide Couplings and Machine-Learning-Guided Substrate Scope Design. Journal of the American Chemical Society, 2022, 144, 23115-23126.	13.7	8
172	Rh(III)-catalyzed C H activation/intramolecular annulation for the synthesis of N-methoxydihydropyrimidin-2-one fused heterocycles. Tetrahedron Letters, 2022, , 154311.	1.4	1
173	Iridiumâ€Catalyzed <i>ortho</i> â€Selective Borylation of Aromatic Amides Enabled by 5â€Trifluoromethylated Bipyridine Ligands. Angewandte Chemie, 2023, 135, .	2.0	1
174	Multideuteration of Nitroaromatics by Silver-Catalyzed Hydrogen-Isotope Exchange. Journal of Organic Chemistry, 2023, 88, 1560-1567.	3.2	2
175	Phosphine Oxide-Promoted Rh(I)-Catalyzed C–H Cyclization of Benzimidazoles with Alkenes. Molecules, 2023, 28, 736.	3.8	0
176	Skeletal Editing: Interconversion of Arenes and Heteroarenes. Helvetica Chimica Acta, 2023, 106, .	1.6	27
177	A metal-free protocol for the preparation of amines using ammonia borane under mild conditions. Organic Chemistry Frontiers, 2023, 10, 970-976.	4.5	4

178	Iridiumâ€Catalyzed <i>ortho</i> â€Selective Borylation of Aromatic Amides Enabled by 5â€Trifluoromethylated Bipyridine Ligands. Angewandte Chemie - International Edition, 2023, 62, .	13.8	8
-----	---	------	---

.

#	Article	IF	CITATIONS
179	Ligandâ€Dependant Selective Synthesis of Mono―and Dialkenylcarbazoles through Rhodium(III)â€Catalyzed Câ^'H Alkenylation. Chemistry - an Asian Journal, 0, , .	3.3	0
180	Propargyl Alcohols as Bifunctional Reagents for Divergent Annulations of Biphenylamines via Dual Câ€H Functionalization/Dual Oxidative Cyclization. Angewandte Chemie, 0, , .	2.0	0
181	Propargyl Alcohols as Bifunctional Reagents for Divergent Annulations of Biphenylamines via Dual Câ~H Functionalization/Dual Oxidative Cyclization. Angewandte Chemie - International Edition, 2023, 62, .	13.8	11
182	Pseudo-multicomponent 1,3-dipolar cycloaddition involving metal-free generation of unactivated azomethine ylides. Organic and Biomolecular Chemistry, 2023, 21, 1927-1936.	2.8	2
183	Catalyst-Controlled Nickel-Catalyzed Intramolecular <i>endo</i> -Selective C–H Cyclization of Benzimidazoles with Alkenes. Organic Letters, 2023, 25, 353-357.	4.6	6
184	Chemodivergent C(sp3)–H and C(sp2)–H cyanomethylation using engineered carbene transferases. Nature Catalysis, 2023, 6, 152-160.	34.4	6
185	Enroute sustainability: metal free C–H bond functionalisation. Chemical Society Reviews, 2023, 52, 2391-2479.	38.1	14
186	Improving the sustainability of the ruthenium-catalysed <i>N</i> -directed C–H arylation of arenes with aryl halides. Green Chemistry, 2023, 25, 2394-2400.	9.0	5
187	The Role of Anionic Ligands on Photoreactivity in Mo(VI) Dioxo Complexes of the Form MoO ₂ X ₂ (NN)**. Chemistry - A European Journal, 2023, 29, .	3.3	1
188	Recent Advances in Rhodiumâ€Catalyzed Electrochemical Câ^'H Activation. Chemistry - an Asian Journal, 2023, 18, .	3.3	3
189	Transition-metal-catalyzed C–H bond activation as a sustainable strategy for the synthesis of fluorinated molecules: an overview. Beilstein Journal of Organic Chemistry, 0, 19, 448-473.	2.2	3
190	Accelerating innovations in C H activation/functionalization through intricately designed magnetic nanomaterials: From genesis to applicability in liquid/regio/photo catalysis. Catalysis Communications, 2023, 175, 106615.	3.3	5
191	Anaerobic Hydroxylation of C(sp ³)–H Bonds Enabled by the Synergistic Nature of Photoexcited Nitroarenes. Journal of the American Chemical Society, 2023, 145, 2794-2799.	13.7	23
192	Regioselective Pd-catalyzed decarboxylative C-6 acylation of 7-O-carbamate coumarins and their anti-inflammatory evaluation. Tetrahedron, 2023, 134, 133295.	1.9	1
193	Facile Ozonation of Light Alkanes to Oxygenates with High Atom Economy in Tunable Condensed Phase at Ambient Temperature. Jacs Au, 2023, 3, 498-507.	7.9	1
194	Diyne-steered switchable regioselectivity in cobalt(<scp>ii</scp>)-catalysed C(sp ²)–H activation of amides with unsymmetrical 1,3-diynes. Organic and Biomolecular Chemistry, 2023, 21, 1942-1951.	2.8	2
195	Iridium-Catalyzed Enantioselective Intermolecular Hydroarylation of 1,1-Disubstituted Alkenes. Journal of Organic Chemistry, 0, , .	3.2	1
196	Lateâ€Stage Functionalisation of Pyridineâ€Containing Bioactive Molecules: Recent Strategies and Perspectives. European Journal of Organic Chemistry, 2023, 26, .	2.4	12

#	ARTICLE	IF	CITATIONS
197	Polystyrene Resins: Versatile and Economical Support for Heterogeneous Nanocatalysts in Sustainable Organic Reactions**. ChemCatChem, 2023, 15, .	3.7	1
198	Cationic Ruthenium for C-H Activation Reactions. Current Organic Chemistry, 2023, 27, 55-61.	1.6	2
199	Transition metal-catalyzed C–H/C–C activation and coupling with 1,3-diyne. Organic and Biomolecular Chemistry, 2023, 21, 2842-2869.	2.8	6
200	New Ligandless Câ^'H Activation Procedure for The Decoration of Câ€3 Position of 1Hâ€Indazole Derivatives. ChemistrySelect, 2023, 8, .	1.5	0
201	Transition Metal atalyzed Câ^'H Functionalization Through Electrocatalysis. ChemSusChem, 2023, 16, .	6.8	7
202	Ru(II)-Catalyzed Regioselective Redox-Neutral [4 + 2] Annulation of <i>N</i> -Chlorobenzamides with 1,3-Diynes at Room Temperature for the Synthesis of Isoquinolones. Journal of Organic Chemistry, 2023, 88, 4704-4719.	3.2	4
203	Iron(III)-Catalyzed Regioselective Synthesis of Electron-Rich Benzothiazoles from Aryl Isothiocyanates via C–H Functionalization. Journal of Organic Chemistry, 2023, 88, 4458-4471.	3.2	3
204	Directing Group Repositioning Strategy Enabled Site- and Enantioselective Addition of Heteroaromatic C–H Bonds to Acyclic Internal Alkenes. Journal of the American Chemical Society, 2023, 145, 6861-6870.	13.7	9
205	Non-covalent interactions in transition metal-catalyzed para-selective C H functionalization of arenes. Advances in Organometallic Chemistry, 2023, , .	1.0	0
206	Transition-Metal-Catalyzed Directed C8–H Carbon–Carbon Bond Formation in Quinolines and 1,2,3,4-Tetrahydroquinolines. Synthesis, 2023, 55, 3454-3469.	2.3	3
207	Mixed-Component Metal–Organic Framework for Boosting Synergistic Photoactivation of C(sp ³)–H and Oxygen. ACS Applied Materials & Interfaces, 2023, 15, 16744-16754.	8.0	7
208	Iron/Photosensitizer-Catalyzed Directed C–H Activation Triggered by the Formation of an Iron Metallacycle. ACS Catalysis, 2023, 13, 4552-4559.	11.2	5
209	Improving a Methane C–H Activation Complex by Metal and Ligand Alterations from Computational Results. Inorganic Chemistry, 2023, 62, 5058-5066.	4.0	0
210	Pd-Nanoparticles-Catalyzed C(sp2)–H Arylation for the Synthesis of Functionalized Heterocycles: Recent Progress and Prospects. Synthesis, 2024, 56, 611-638.	2.3	2
211	Iron-Catalyzed C(Sp ³)–H Borylation, Thiolation, and Sulfinylation Enabled by Photoinduced Ligand-to-Metal Charge Transfer. Journal of the American Chemical Society, 2023, 145, 7600-7611.	13.7	41
212	Metal-free photoinduced hydrogen atom transfer assisted C(sp ³)–H thioarylation. Green Chemistry, 2023, 25, 3431-3436.	9.0	7
213	Synthesis of Polysubstituted Furan Frameworks via [3 + 2] Annulation of <i>N</i> -Enoxyimides with Chelated Alkynes Initiated by Rh(III)-Catalyzed C–H Activation. Organic Letters, 2023, 25, 2394-2399.	4.6	1
214	Rh(III)-Catalyzed Alkylation of 8-Methylquinolines with Oxabenzonorbornadienes. Organic Letters, 2023, 25, 2627-2631.	4.6	6

#	Article	IF	CITATIONS
215	Heterocycles from Sulfur Ylides. Topics in Heterocyclic Chemistry, 2023, , 63-105.	0.2	1
216	Rh(III)â€Catalyzed Cross Dehydrogenative Coupling of <i>N</i> â€Phenyl Substituent with Thiophenes. European Journal of Organic Chemistry, 2023, 26, .	2.4	1
217	Synthesis of Fused Lactones through Transitionâ€Metalâ€Catalyzed <i>peri</i> Câ^'H Functionalization. Asian Journal of Organic Chemistry, 2023, 12, .	2.7	1
218	Copperâ€catalyzed intramolecular annulation through C–H activation: Synthesis of Carbazolones. Applied Organometallic Chemistry, 0, , .	3.5	0
219	Redox-neutral C–H annulation strategies for the synthesis of heterocycles <i>via</i> high-valent Cp*Co(<scp>iii</scp>) catalysis. Organic and Biomolecular Chemistry, 2023, 21, 3918-3941.	2.8	3
220	Iridiumâ€Catalyzed Branchâ€Selective and Enantioselective C2â€Alkylation of <i>N</i> â€Benzimidazolyl Indoles. Advanced Synthesis and Catalysis, 2023, 365, 2013-2017.	4.3	1
221	Uncovering the Reactivity of Cobaltâ€Catalyst Towards Regioselective Hydroarylation of 1,6â€Diyne via Weakâ€Chelation Assisted Câ^'H Bond Activation. Advanced Synthesis and Catalysis, 2023, 365, 1977-1982.	4.3	1
222	A three component 1,3-difunctionalization of vinyl diazo esters enabled by a cobalt catalyzed C–H activation/carbene migratory insertion. Chemical Communications, 2023, 59, 6076-6079.	4.1	1
223	Reversible Deactivation of Manganese Catalysts in Alkene Oxidation and H ₂ O ₂ Disproportionation. ACS Catalysis, 2023, 13, 6403-6415.	11.2	3
224	Eco-friendly, green and new metal-free intramolecular Friedel–Crafts reaction to synthesis of Acridones derivatives using phenylboronic acid derivatives. Tetrahedron Letters, 2023, 123, 154532.	1.4	0
225	Green Aromatic Epoxidation with an Iron Porphyrin Catalyst for One-Pot Functionalization of Renewable Xylene, Quinoline, and Acridine. Molecules, 2023, 28, 3940.	3.8	1
226	Transition metal–catalyzed remote C─H borylation: An emerging synthetic tool. Science Advances, 2023, 9, .	10.3	16
227	Enantioselective Synthesis of 1,2â€Benzothiazine 1â€Imines via Ru ^{II} /Chiral Carboxylic Acidâ€Catalyzed Câ^'H Alkylation/Cyclization. Angewandte Chemie, 0, , .	2.0	0
228	Enantioselective Synthesis of 1,2â€Benzothiazine 1â€Imines via Ru ^{II} /Chiral Carboxylic Acid atalyzed Câ^'H Alkylation/Cyclization. Angewandte Chemie - International Edition, 2023, 62, .	13.8	4
229	Fast and Selective β-C–H Borylation of N-Heterocycles with a Supramolecular Iridium Catalyst: Circumventing Deactivation Pathways and Mechanistic Insights. ACS Catalysis, 2023, 13, 7715-7729.	11.2	6
230	Palladium-Catalyzed sp3 C–H Acetoxylation of α,α-Disubstituted α-Amino Acids. Chemistry, 2023, 5, 1369-137	772.2	0
231	The evolution of directing group strategies for C(sp)–H activation. Trends in Chemistry, 2023, 5, 551-560.	8.5	2
232	Preparative Scale Applications of Câ \in "H Activation in Medicinal Chemistry. Angewandte Chemie, 0, , .	2.0	0

#	Article	IF	CITATIONS
233	Enantioselective Câ^'P Bond Formation through C(<i>sp</i> ³)â^'H Functionalization. Advanced Synthesis and Catalysis, 2023, 365, 2152-2158.	4.3	1
234	Preparative Scale Applications of Câ^'H Activation in Medicinal Chemistry. Angewandte Chemie - International Edition, 2023, 62, .	13.8	6
235	Regioselective Iridiumâ€Catalyzed C8â€H Borylation of 4â€Quinolones via Transient <i>O</i> â€Borylated Quinolines. Chemistry - A European Journal, 2023, 29, .	3.3	1
236	Photochemically Mediated Ring Expansion of Indoles and Pyrroles with Chlorodiazirines: Synthetic Methodology and Thermal Hazard Assessment. Angewandte Chemie - International Edition, 2023, 62, .	13.8	9
237	Photochemically Mediated Ring Expansion of Indoles and Pyrroles with Chlorodiazirines: Synthetic Methodology and Thermal Hazard Assessment. Angewandte Chemie, 2023, 135, .	2.0	2
238	Ru(II)-Catalyzed Weakly Coordinating Carbonyl-Assisted Dialkynylation of (Hetero)Aryl Ketones. Journal of Organic Chemistry, 2023, 88, 8542-8552.	3.2	2
239	Ru(<scp>ii</scp>)/Ru(<scp>iv</scp>)-catalyzed C(sp ²)–H allylation with alkene difunctionalization to access isochroman-1-imines. Chemical Communications, 2023, 59, 9497-9500.	4.1	1
240	Noble Metal versus Abundant Metal Catalysts in Fine Organic Synthesis: Cost Comparison of C–H Activation Methods. Organometallics, 2023, 42, 1433-1438.	2.3	2
241	Insights into the effect of contact ion-pairs on C H bond activation for the synthesis of Ru(III)-NHC complexes: A combined experimental and computational study. Journal of Organometallic Chemistry, 2023, 998, 122802.	1.8	0
242	Theoretical Study on the Rhodium-Catalyzed Electrochemical C–H Phosphorylation: Insights into the Effect of Electro-oxidation on the Reaction Mechanism. ACS Catalysis, 0, , 9352-9365.	11.2	1
243	Solar-powered P450 catalysis: Engineering electron transfer pathways from photosynthesis to P450s. Journal of Inorganic Biochemistry, 2023, 245, 112242.	3.5	2
244	Coupling of Heteroarene and Arenol via Nickel atalyzed Câ^'H/Câ^'OH Activation. ChemCatChem, 2023, 15, ·	3.7	0
245	C3-Alkylation of furfural derivatives by continuous flow homogeneous catalysis. Beilstein Journal of Organic Chemistry, 0, 19, 582-592.	2.2	0
246	Transition-Metal-Catalyzed C–H Bond Activation for the Formation of C–C Bonds in Complex Molecules. Chemical Reviews, 2023, 123, 7692-7760.	47.7	39
247	Photochemical reactions of a diamidocarbene: cyclopropanation of bromonaphthalene, addition to pyridine, and activation of sp ³ C–H bonds. Chemical Science, 2023, 14, 7867-7874.	7.4	1
248	Os(II)-catalyzed γ-C(sp3)–H amidation and meta-C(sp2)–H alkylation by fine-tuning the characteristics of in-situ-generated C–Os σ bonds. Cell Reports Physical Science, 2023, 4, 101423.	5.6	1
249	Nonâ€covalent Interaction ontrolled Siteâ€selective Câ^'H Transformations. Chemical Record, 0, , .	5.8	0
250	Skeletal Editing of (Hetero)Arenes Using Carbenes. Chemistry - A European Journal, 2023, 29,	3.3	20

#	Article	IF	CITATIONS
251	Pyridine C(sp ²)–H bond functionalization under transition-metal and rare earth metal catalysis. Beilstein Journal of Organic Chemistry, 0, 19, 820-863.	2.2	1
252	Metal-Free Eliminative C-H Arylthiolation of 2H-Imidazole N-Oxides with Thiophenols. Chemistry, 2023, 5, 1477-1487.	2.2	0
254	Tunably strained metallacycles enable modular differentiation of aza-arene C–H bonds. Nature Communications, 2023, 14, .	12.8	2
255	Rh(III)-Catalyzed Dienylation and Cyclopropylation of 1,2,3-Benzotriazinones with Alkylidenecyclopropanes. Organic Letters, 2023, 25, 5179-5184.	4.6	1
256	What enables and blocks synthetic chemistry methods in becoming industrially significant?. Cell Reports Physical Science, 2023, 4, 101493.	5.6	2
257	Transient Directing Group enabled C3â€(sp2)â€H alkenylation of Five Membered Heterocyclic Aldehydes: An Access to Mechanochromic Luminogen. Advanced Synthesis and Catalysis, 0, , .	4.3	0
258	Chiral Phosphoric Acid–Palladium(II) Complex Catalyzed Asymmetric Desymmetrization of Biaryl Compounds by C(sp ³)–H Activation. Journal of the American Chemical Society, 2023, 145, 15906-15911.	13.7	6
259	A general enantioselective C–H arylation using an immobilized recoverable palladium catalyst. ChemSusChem, 0, , .	6.8	0
260	Enhancing Substrate–Metal Catalyst Affinity via Hydrogen Bonding: Pd(II)-Catalyzed β-C(sp ³)–H Bromination of Free Carboxylic Acids. Journal of the American Chemical Society, 2023, 145, 16297-16304.	13.7	3
261	Rh-Catalyzed Twofold Conjugate Addition of 2-Arylimidazo[1,2- <i>a</i>]pyridines to <i>p</i> -Quinols To Access Bridged Scaffolds with Three Contiguous Stereocenters. Journal of Organic Chemistry, 0, , .	3.2	0
262	Recent Advances in Selective C-H Bonds Functionalization through Aryl RadicalMediated Hydrogen Atom Transfer Strategy. Current Organic Chemistry, 2023, 25, .	1.6	0
263	Cu-Mediated Tandem 2,3-Disubstituted Indole Synthesis from Simple Anilines and Internal Alkynes <i>via</i> C–H Annulation. Journal of Organic Chemistry, 2023, 88, 10960-10973.	3.2	4
264	Green Chemistry Approach toward the Regioselective Synthesis of α,α-Disubstituted Allylic Amines. Journal of Organic Chemistry, 2023, 88, 11992-11999.	3.2	0
265	Theoretical Investigations of Palladiumâ€Catalyzed [3+2] Annulation via Benzylic and <i>meta</i> Câ^H Bond Activation. Chemistry - an Asian Journal, 2023, 18, .	3.3	4
266	Direct Arylation of Thiophenes in Continuous Flow. ChemistrySelect, 2023, 8, .	1.5	0
267	N-heterocyclic iminium ions catalyzed Friedel–Crafts type alkenylation of arenes with alkynes: A metal free and solvent free approach. Catalysis Communications, 2023, 182, 106753.	3.3	0
268	Rhodium(III) atalyzed Câ^'H/Nâ^'H Activation for Direct Synthesis of Pyrimidoindolones under Mild Conditions. Chemistry - an Asian Journal, 2023, 18, .	3.3	1
269	Applications of copper and iron-catalyzed Csp ³ –Csp ³ cross-dehydrogenative coupling in organic synthesis. Synthetic Communications, 2023, 53, 1665-1700.	2.1	0

#	Article	IF	CITATIONS
270	Photoinduced ligand-to-iron charge transfer enabled C(sp ³)–H phosphorylation of hydrocarbons. Green Chemistry, 2023, 25, 7817-7824.	9.0	1
271	Classic <i>vs.</i> C–H functionalization strategies in the synthesis of APIs: a sustainability comparison. Green Chemistry, 2023, 25, 7916-7933.	9.0	2
272	Organo-Se BTSAs-enabled performance: From racemic and asymmetric synthesis to click chemistry application. CheM, 2023, 9, 3335-3346.	11.7	9
273	Chemoselective C(sp)–H borylation of terminal alkynes catalyzed by a bis(N-heterocyclicsilylene) manganese complex. Inorganic Chemistry Frontiers, 2023, 10, 6067-6076.	6.0	2
274	Synthesis of spiropyrans and arylquinones <i>via</i> Ru(<scp>ii</scp>)-catalyzed condition-controlled coupling of 3-aryl-2 <i>H</i> -benzoxazinones with benzoquinones. Chemical Communications, 2023, 59, 11704-11707.	4.1	3
275	Solvent-free and ball mill-free catalytic Câ \in "H methylation. Green Chemistry, O, , .	9.0	Ο
276	Activation of robust bonds by carbonyl complexes of Mn, Fe and Co. Chemical Communications, 2023, 59, 11932-11946.	4.1	1
277	Radical cascade cyclization of 1, <i>n</i> -enynes under photo/electrochemical conditions. Organic Chemistry Frontiers, 2023, 10, 5735-5745.	4.5	4
278	Transition-metal-mediated C-C bond activation: Recent advances and its applications in organic synthesis. Results in Chemistry, 2023, 6, 101130.	2.0	0
279	Annulationâ€Induced Hidden Reactivity of the 1,2,4â€Triazole Backbone. Angewandte Chemie, 2023, 135, .	2.0	0
280	Annulationâ€Induced Hidden Reactivity of the 1,2,4â€Triazole Backbone. Angewandte Chemie - International Edition, 2023, 62, .	13.8	2
281	Bimetallic (or Multimetallic) Synthesis of N-Heterocycles. Catalysts, 2023, 13, 1268.	3.5	2
282	Cobalt(III)-Catalyzed Free-Amine-Directed Site-Selective Allylation in 2-Aminobiaryls with Vinyl Cyclopropanes. ACS Catalysis, 2023, 13, 12543-12552.	11.2	1
283	Transition-metal catalyzed C–H activation as a means of synthesizing complex natural products. Chemical Society Reviews, 2023, 52, 7461-7503.	38.1	3
284	Ruthenium(II)-Catalyzed [4 + 2] Electro-Oxidative Annulation of <i>C</i> ⁶ -Arylpurines/Purine Nucleosides. Organic Letters, 2023, 25, 6796-6801.	4.6	0
285	The acylation with aldehydes via dual C-H activations by combining photocatalysis and palladium catalysis. Molecular Catalysis, 2023, 550, 113542.	2.0	1
286	Supported Fe Ions on Different Zr-Based Metal–Organic Frameworks for Alkane Oxidation. , 2023, 1, 2368-2376.		0
287	Double cobalt-catalyzed atroposelective C–H activation: One-step synthesis of atropisomeric indoles bearing vicinal C–C and C–N diaxes. Chem Catalysis, 2023, 3, 100765.	6.1	2

#	Article	IF	CITATIONS
288	Co-Schiff base complexes functionalized on graphene as efficient heterogeneous nanocatalysts for alcohols oxidation. Inorganic and Nano-Metal Chemistry, 0, , 1-11.	1.6	0
289	Rhodiumâ€Catalysed Selective Câ^'H Allylation of 1 <i>H</i> â€Indazoles with Vinylethylene Carbonate: Easily Introducing Allylic Alcohol. European Journal of Organic Chemistry, 2023, 26, .	2.4	0
290	When transition-metal-catalyzed C–H activation meets allene chemistry. , 2023, 8, 100049.		1
291	Selective Electrochemical Benzylic C(sp ³)â^'H Oxidations in Fluoroalcohols. ChemistrySelect, 2023, 8, .	1.5	1
292	Pdâ€Catalyzed [3+2]â€Dehydrogenative Annulation Reactions. European Journal of Organic Chemistry, 2023, 26, .	2.4	0
293	Catalytic Câ [~] 'H Functionalization of Trimethylamine. Synlett, 0, , .	1.8	0
294	Green Synthesis of 3,4â€Unsubstituted Isoquinolones through Rhodium(III)â€Catalyzed Câ^'H Activation and Annulation in Ethanol. European Journal of Organic Chemistry, 2023, 26, .	2.4	1
295	Metal atalyzed Synthesis of Benzofused Fiveâ€Membered N/O/S Heterocycles, a Progressive Area in Synthetic Chemistry. European Journal of Organic Chemistry, 0, , .	2.4	0
296	Recent advances in metal directed C–H amidation/amination using sulfonyl azides and phosphoryl azides. Organic and Biomolecular Chemistry, 0, , .	2.8	0
297	Micellar catalysis: a green solution to enable undirected and mild C–H activation of (oligo)thiophenes at the challenging β-position. Chemical Science, 2023, 14, 12049-12055.	7.4	1
298	Synthesis of well-defined ester-linked covalent organic polymer and its potential applications in C–H bond activation. Journal of Photochemistry and Photobiology A: Chemistry, 2024, 447, 115248.	3.9	1
299	Axially Chiral 2-Hydroxybiaryls by Palladium-Catalyzed Enantioselective C–H Activation. ACS Catalysis, 2023, 13, 13994-13999.	11.2	1
300	Benzoxazole or Benzothiazole as an Innate Directing Group for Palladium- and Ruthenium-Catalyzed Complementary C–H Arylation: Functionalization of Biorelevant Heterocyclic Scaffolds. Synthesis, 2024, 56, 312-328.	2.3	1
301	Advances in the transition metal-catalyzed C-H amination strategies using anthranils. Organic and Biomolecular Chemistry, 0, , .	2.8	0
302	Transition-Metal-Free Electrochemical Selenylative Cyclization of Alkynyl Phosphonates. Journal of Organic Chemistry, 2023, 88, 15414-15427.	3.2	1
303	Site-Selective C8-Alkylation of Quinolines with Cyclopropanols: Merging C–H/C–C Bond Activation. Organic Letters, 2023, 25, 7805-7809.	4.6	1
304	Diazines and Triazines as Building Blocks in Ligands for Metal-Mediated Catalytic Transformations. ACS Organic & Inorganic Au, 2024, 4, 41-58.	4.0	0
305	Reversible Oxidative Addition of Nonactivated C–H Bonds to Structurally Constrained Phosphenium Ions. Journal of the American Chemical Society, 2023, 145, 24184-24190.	13.7	2

#	ARTICLE	IF	CITATION
 306	A tautomerized ligand enabled meta selective C–H borylation of phenol. Nature Communications, 2023, 14, .	12.8	2
307	Regioselectivity Control in the Synthesis of Linear Conjugated Dienes Enabled by Manganese(I)-Catalyzed C–H Activation. ACS Catalysis, 2023, 13, 14523-14529.	11.2	0
308	Chemo selective C-H alkylation of isoquinolones with maleimides: A combined experimental and computational case study. Molecular Catalysis, 2023, 551, 113597.	2.0	3
309	Rhodium(<scp>iii</scp>)-catalyzed three-component C(sp ²)–H activation for the synthesis of amines. Chemical Communications, 2023, 59, 14431-14434.	4.1	0
310	Photo-induced versatile aliphatic C–H functionalization via electron donor–acceptor complex. Science Bulletin, 2023, , .	9.0	0
311	Continuousâ€Flow Enantioselective Hydroacylations under Heterogeneous Chiral Rhodium Catalysts. Angewandte Chemie - International Edition, 2024, 63, .	13.8	2
312	Continuousâ€Flow Enantioselective Hydroacylations under Heterogeneous Chiral Rhodium Catalysts. Angewandte Chemie, 0, , .	2.0	0
313	Methanol as a C1 Source for the Synthesis of 1,3â€Polyheterocyclic Systems. European Journal of Organic Chemistry, 2023, 26, .	2.4	0
314	Catalyst-free assembly of a polyfunctionalized 1,2,4-triazole-fused N-heterocycle, 6-acylated pyrrolo[1,2- <i>a</i>][1,2,4]triazolo[5,1- <i>c</i>]pyrazine. Organic and Biomolecular Chemistry, 0, , .	2.8	0
315	Ligand Combination Approach in Pd atalyzed Direct Câ^'H Arylation of Benzothiazole and Benzoxazole. European Journal of Organic Chemistry, 0, , .	2.4	0
316	Electrochemical Câ^'H/Câ^'C Bond Oxygenation: A Potential Technology for Plastic Depolymerization. Chemical Record, 0, , .	5.8	0
317	Recent Advances in C–H Functionalization of Pyrenes. Chemistry, 2023, 5, 2713-2755.	2.2	1
318	Directed Câ€H Allylation of Aromatic Carboxamides with Allyl Aryl Ethers under Cp*Co(III)â€Catalysis. European Journal of Organic Chemistry, 0, , .	2.4	0
319	Ion mobility mass spectrometry uncovers regioselectivity in the carboxylate-assisted C–H activation of palladium N-heterocyclic carbene complexes. Dalton Transactions, 0, , .	3.3	0
320	Precise activation of Câ \in "C bonds for plastics recycling and upcycling. Chemical Science, 0, , .	7.4	0
321	Designing solvent systems using self-evolving solubility databases and graph neural networks. Chemical Science, 2024, 15, 923-939.	7.4	0
322	Copper atalyzed Câ^'H (Phenylsulfonyl)difluoromethylation of Acrylamides: Scope, Mechanism, and Critical Role of Additives. Chemistry - A European Journal, 2024, 30, .	3.3	0
323	Iodine-Catalyzed Radical C–H Amination of Nonaromatic Imidazole Oxides: Access to Cyclic α-Aminonitrones. Journal of Organic Chemistry, 0, , .	3.2	0

# 324	ARTICLE C-H Borylation: A Toolbox for Molecular Diversification. Organic Chemistry Frontiers, 0, , .	IF 4.5	CITATIONS 0
325	Carbon Dot as Visible-Light Photoredox Catalysts for a Myriad of Organic Transformations. Journal of Organic Chemistry, 0, , .	3.2	0
326	Organoâ€Photoredox Catalyzed C(sp3)â€H Bond Arylation of Aliphatic Amides. ChemSusChem, 0, , .	6.8	0
327	C-H Bond Activation by High-valent Iron/Cobalt-oxo Complexes: A Quantum Chemical Modeling Approach. Physical Chemistry Chemical Physics, 0, , .	2.8	0
328	Design of Organic Radical Cations as Potent Hydrogenâ€Atom Transfer Catalysts for Câ^'H Functionalization. Asian Journal of Organic Chemistry, 2024, 13, .	2.7	0
329	Synthesis of Spiropyrans via Ru(II)-Catalyzed Coupling of 3-aryl-2H-benzo[b][1,4]oxazines with Benzoquinones. Organic and Biomolecular Chemistry, 0, , .	2.8	0
330	Recent advances in hydrogen atom transfer induced C(sp ³)–H functionalizations initiated by radical addition to alkynes. Organic Chemistry Frontiers, 2024, 11, 1232-1250.	4.5	0
331	Synergistic silver-mediated and palladium-catalyzed nondirected olefination of aryl C–H bond: quick access to multi-substituted aryl olefins. Science China Chemistry, 2024, 67, 882-889.	8.2	0
332	Cu-Catalyzed Oxidative C(sp ²)–H Cycloetherification of <i>o</i> -Alkenyl Arenols for the Preparation of Fused Furans. Journal of Organic Chemistry, 2024, 89, 34-43.	3.2	0
333	Aerobic Catalytic Crossâ€Dehydrogenative Coupling of Furans with Indoles Provides Access to Fluorophores with Large Stokes Shift. Chemistry - A European Journal, 2024, 30, .	3.3	0
334	Discovery of Organic Optoelectronic Materials Powered by Oxidative Ar–H/Ar–H Coupling. Journal of the American Chemical Society, 2024, 146, 1224-1243.	13.7	0
335	The green chemistry paradigm in modern organic synthesis. Russian Chemical Reviews, 2023, 92, RCR5104.	6.5	0
336	Iridium(<scp>iii</scp>)-catalyzed β-trifluoromethyl enone carbonyl-directed regioselective <i>ortho</i> -C(sp ²)–H olefination. Organic and Biomolecular Chemistry, 2024, 22, 1162-1166.	2.8	0
337	Ru(II) Catalyzed Oxidative Dehydrogenative Annulation and Spirocyclization of Isoquinolones with N‣ubstituted Maleimides. Advanced Synthesis and Catalysis, 2024, 366, 1788-1808.	4.3	0
338	Cobalt/Organophotoredox Dual-Catalysis-Enabled Cyclization of 1,5,10-Enediynes Involving Metallole-Mediated Remote C(<i>sp</i> ³)–H Bond Activation Leading to Axially Chiral Aryl Alkenes. ACS Catalysis, 2024, 14, 2049-2057.	11.2	0
339	Direct Heterocycle C–H Alkenylation via Dual Catalysis Using a Palladacycle Precatalyst: Multifactor Optimization and Scope Exploration Enabled by High-Throughput Experimentation. Journal of Organic Chemistry, 0, , .	3.2	0
340	Engineering Hydroxylase Activity, Selectivity, and Stability for a Scalable Concise Synthesis of a Key Intermediate to Belzutifan. Angewandte Chemie - International Edition, 2024, 63, .	13.8	3
341	Engineering Hydroxylase Activity, Selectivity, and Stability for a Scalable Concise Synthesis of a Key Intermediate to Belzutifan. Angewandte Chemie, 2024, 136, .	2.0	0

#	Article	IF	CITATIONS
342	Sequential <i>ortho</i> -/ <i>meta</i> -C–H functionalizations of <i>N</i> -tosyl-benzamides for the synthesis of polyfunctionalized arenes. Chemical Communications, 2024, 60, 2244-2247.	4.1	0
343	Affinity-peptide-mediated multi-enzyme self-assembly system enhances dioxygenase catalyzing C–H hydroxylation via in situ α-ketoglutarate generation and H2O2 elimination. Molecular Catalysis, 2024, 555, 113873.	2.0	0
344	Unusual catalytic strategy by non-heme Fe(<scp>ii</scp>)/2-oxoglutarate-dependent aspartyl hydroxylase AspH. Chemical Science, 2024, 15, 3466-3484.	7.4	0
345	Ir(<scp>iii</scp>)/Ag(<scp>i</scp>)-catalyzed directly C–H amidation of arenes with OH-free hydroxyamides as amidating agents. RSC Advances, 2024, 14, 5975-5980.	3.6	0
346	Rhodium-catalyzed annulation of hydrazines with vinylene carbonate to synthesize unsubstituted 1-aminoindole derivatives. RSC Advances, 2024, 14, 4804-4809.	3.6	0
347	Selective Oxidation of Hydrocarbons by Molecular Iron Catalysts Based on Molecular Recognition through π–̀ Interaction in Aqueous Medium. ACS Catalysis, 2024, 14, 2609-2619.	11.2	0
348	Palladiumâ€Catalyzed Câ€H Olefination of Imidazo[1,2a] pyridine Carboxamide in Aqueous Ethanol under Oxygen. Chemistry - A European Journal, 2024, 30, .	3.3	0
349	Wellâ€defined Bis(imino)pyridineâ€Manganese(II) Complexes for Oxidation of Benzylic Câ^'H Bonds. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2024, 650, .	1.2	0
350	Recent Progress in Functionalization of the Pyridine Ring through Câ^'S Bond Formation under Transition Metal Catalyst Free Conditions. Advanced Synthesis and Catalysis, 2024, 366, 1467-1483.	4.3	0
351	Construction of an Angular Tricyclic Benzofuran Skeleton Using the C–H Activation Strategy. Journal of Organic Chemistry, 2024, 89, 3304-3308.	3.2	0
352	Mechanistic Insights into the Origins of Selectivity in a Cu-Catalyzed C–H Amidation Reaction. Journal of the American Chemical Society, 2024, 146, 6168-6177.	13.7	0
353	Cu(II)-Mediated Sulfonylation of (Hetero)arenes with TosMIC Using Monodentate Directing Groups. Journal of Organic Chemistry, 2024, 89, 3894-3906.	3.2	0
354	Zirconium and hafnium catalyzed C–C single bond hydroboration. Nature Communications, 2024, 15, .	12.8	0
355	Electrochemical low valent cobalt-catalyzed addition of aryl and vinyl chlorides to α-ketoamides <i>via</i> C–Cl bond activation. Chemical Communications, 2024, 60, 3826-3829.	4.1	0
356	X-type silyl ligands for transition-metal catalysis. Chemical Society Reviews, 2024, 53, 4648-4673.	38.1	0
357	Recent advances in spirocyclization of maleimides <i>via</i> transition-metal catalyzed C–H activation. Organic and Biomolecular Chemistry, 2024, 22, 2916-2947.	2.8	0