Duchenne muscular dystrophy

Nature Reviews Disease Primers 7, 13 DOI: 10.1038/s41572-021-00248-3

Citation Report

#	Article	IF	CITATIONS
1	Abnormal Calcium Handling in Duchenne Muscular Dystrophy: Mechanisms and Potential Therapies. Frontiers in Physiology, 2021, 12, 647010.	1.3	60
2	Casimersen: First Approval. Drugs, 2021, 81, 875-879.	4.9	136
3	Proteomic analysis identifies key differences in the cardiac interactomes of dystrophin and micro-dystrophin. Human Molecular Genetics, 2021, 30, 1321-1336.	1.4	10
5	Dystrophin deficiency impairs vascular structure and function in the canine model of <scp>Duchenne</scp> muscular dystrophy. Journal of Pathology, 2021, 254, 589-605.	2.1	15
6	Assessing the ability of boys with Duchenne muscular dystrophy age 4–7 years to swallow softgel capsules: Clinical trial experience with edasalonexent. Journal of Clinical Pharmacy and Therapeutics, 2021, , .	0.7	0
7	Application of Patient-Specific iPSCs for Modelling and Treatment of X-Linked Cardiomyopathies. International Journal of Molecular Sciences, 2021, 22, 8132.	1.8	3
8	Electrophysiological analysis of healthy and dystrophic 3-D bioengineered skeletal muscle tissues. American Journal of Physiology - Cell Physiology, 2021, 321, C749-C759.	2.1	5
9	Wharton's Jelly-Derived Mesenchymal Stem Cells Reduce Fibrosis in a Mouse Model of Duchenne Muscular Dystrophy by Upregulating microRNA 499. Biomedicines, 2021, 9, 1089.	1.4	8
10	Loss of dysferlin or myoferlin results in differential defects in excitation–contraction coupling in mouse skeletal muscle. Scientific Reports, 2021, 11, 15865.	1.6	9
11	Multiomic Approaches to Uncover the Complexities of Dystrophin-Associated Cardiomyopathy. International Journal of Molecular Sciences, 2021, 22, 8954.	1.8	4
12	A Blood Biomarker for Duchenne Muscular Dystrophy Shows That Oxidation State of Albumin Correlates with Protein Oxidation and Damage in Mdx Muscle. Antioxidants, 2021, 10, 1241.	2.2	6
13	Immunomodulation and Biomaterials: Key Players to Repair Volumetric Muscle Loss. Cells, 2021, 10, 2016.	1.8	8
15	Perspectives on hiPSC-Derived Muscle Cells as Drug Discovery Models for Muscular Dystrophies. International Journal of Molecular Sciences, 2021, 22, 9630.	1.8	3
16	Gene Therapy for Duchenne Muscular Dystrophy. Journal of Neuromuscular Diseases, 2021, 8, S303-S316.	1.1	66
17	A revised model for mitochondrial dysfunction in Duchenne muscular dystrophy. European Journal of Translational Myology, 2021, 31, .	0.8	5
18	INVESTIGATION OF THE EFFECT OF WALKING SPEED ON LEG MUSCLE REACTION BY COMPLEXITY-BASED ANALYSIS OF ELECTROMYOGRAM (EMG) SIGNALS. Fractals, 0, , 2150254.	1.8	9
19	Case Report: The Genetic Diagnosis of Duchenne Muscular Dystrophy in the Middle East. Frontiers in Pediatrics, 2021, 9, 716424.	0.9	7
20	Hematopoietic Prostaglandin D Synthase Inhibitor PK007 Decreases Muscle Necrosis in DMD mdx Model Mice. Life, 2021, 11, 994.	1.1	3

#	Article	IF	Citations
21	A Cautiously Optimistic Outlook of a Designer Therapy for 1% of Duchenne Muscular Dystrophy Patients. Human Gene Therapy, 2021, 32, 872-874.	1.4	0
22	Complexity of skeletal muscle degeneration: multi-systems pathophysiology and organ crosstalk in dystrophinopathy. Pflugers Archiv European Journal of Physiology, 2021, 473, 1813-1839.	1.3	25
23	Preparing n-of-1 Antisense Oligonucleotide Treatments for Rare Neurological Diseases in Europe: Genetic, Regulatory, and Ethical Perspectives. Nucleic Acid Therapeutics, 2022, 32, 83-94.	2.0	35
25	The Role of Patient Involvement When Developing Therapies. Nucleic Acid Therapeutics, 2022, 32, 118-122.	2.0	2
26	Genome editing in large animal models. Molecular Therapy, 2021, 29, 3140-3152.	3.7	18
27	Tightly linked morpholino-nucleoside chimeras: new, compact cationic oligonucleotide analogues. Organic and Biomolecular Chemistry, 2021, 19, 8711-8721.	1.5	10
28	Disrupted Calcium Homeostasis in Duchenne Muscular Dystrophy: A Common Mechanism behind Diverse Consequences. International Journal of Molecular Sciences, 2021, 22, 11040.	1.8	28
29	Global, segmental and layer specific analysis of myocardial involvement in Duchenne muscular dystrophy by cardiovascular magnetic resonance native T1 mapping. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 110.	1.6	4
30	Alteration of STIM1/Orai1-Mediated SOCE in Skeletal Muscle: Impact in Genetic Muscle Diseases and Beyond. Cells, 2021, 10, 2722.	1.8	7
31	Rational engineering of a functional CpG-free ITR for AAV gene therapy. Gene Therapy, 2022, 29, 333-345.	2.3	23
32	Sertoli Cells Improve Myogenic Differentiation, Reduce Fibrogenic Markers, and Induce Utrophin Expression in Human DMD Myoblasts. Biomolecules, 2021, 11, 1504.	1.8	2
33	Comprehensive Molecular Analysis of DMD Gene Increases the Diagnostic Value of Dystrophinopathies: A Pilot Study in a Southern Italy Cohort of Patients. Diagnostics, 2021, 11, 1910.	1.3	5
35	Unravelling protein turnover in Duchenne muscular dystrophy: one protein at a time. Journal of Physiology, 2021, 599, 5135-5136.	1.3	0
36	RNA Targeting in Inherited Neuromuscular Disorders: Novel Therapeutic Strategies to Counteract Mis-Splicing. Cells, 2021, 10, 2850.	1.8	3
37	Actin Cytoskeletal Dynamics in Single-Cell Wound Repair. International Journal of Molecular Sciences, 2021, 22, 10886.	1.8	14
38	Partial Ablation of Non-Myogenic Progenitor Cells as a Therapeutic Approach to Duchenne Muscular Dystrophy. Biomolecules, 2021, 11, 1519.	1.8	3
40	Discovery of a Highly Potent and Selective Degrader Targeting Hematopoietic Prostaglandin D Synthase via In Silico Design. Journal of Medicinal Chemistry, 2021, 64, 15868-15882.	2.9	18
41	Extensor carpi ulnaris muscle shows unexpected slow-to-fast fiber type switch in Duchenne muscular dystrophy dogs. DMM Disease Models and Mechanisms, 2021, , .	1.2	6

#	Article	IF	CITATIONS
42	Lessons Learned from Discontinued Clinical Developments in Duchenne Muscular Dystrophy. Frontiers in Pharmacology, 2021, 12, 735912.	1.6	13
43	Clinical and Molecular Spectrum of Muscular Dystrophies (MDs) with Intellectual Disability (ID): a Comprehensive Overview. Journal of Molecular Neuroscience, 2022, 72, 9-23.	1.1	6
44	The DMD gene and therapeutic approaches to restore dystrophin. Neuromuscular Disorders, 2021, 31, 1013-1020.	0.3	25
45	The Donnan-dominated resting state of skeletal muscle fibers contributes to resilience and longevity in dystrophic fibers. Journal of General Physiology, 2022, 154, .	0.9	0
46	Therapeutic Implications of miRNAs for Muscle-Wasting Conditions. Cells, 2021, 10, 3035.	1.8	17
47	Genetic correction strategies for Duchenne muscular dystrophy and their impact on the heart. Progress in Pediatric Cardiology, 2021, 63, 101460.	0.2	4
48	Skeletal muscle aging, cellular senescence, and senotherapeutics: Current knowledge and future directions. Mechanisms of Ageing and Development, 2021, 200, 111595.	2.2	31
49	Skeletal Ryanodine Receptors Are Involved in Impaired Myogenic Differentiation in Duchenne Muscular Dystrophy Patients. International Journal of Molecular Sciences, 2021, 22, 12985.	1.8	8
50	Ataluren delays loss of ambulation and respiratory decline in nonsense mutation Duchenne muscular dystrophy patients. Journal of Comparative Effectiveness Research, 2022, 11, 139-155.	0.6	29
51	A scalable, clinically severe pig model for Duchenne muscular dystrophy. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	20
52	β-Dystroglycan Restoration and Pathology Progression in the Dystrophic mdx Mouse: Outcome and Implication of a Clinically Oriented Study with a Novel Oral Dasatinib Formulation. Biomolecules, 2021, 11, 1742.	1.8	13
53	Cas9-specific immune responses compromise local and systemic AAV CRISPR therapy in multiple dystrophic canine models. Nature Communications, 2021, 12, 6769.	5.8	73
54	A Dystrophin Exon-52 Deleted Miniature Pig Model of Duchenne Muscular Dystrophy and Evaluation of Exon Skipping. International Journal of Molecular Sciences, 2021, 22, 13065.	1.8	9
55	Macrophage plasticity in Duchenne muscular dystrophy: a nexus of pathological remodelling with therapeutic implications. Journal of Physiology, 2022, 600, 3455-3464.	1.3	6
56	Reducing sarcolipin expression improves muscle metabolism in <i>mdx</i> mice. American Journal of Physiology - Cell Physiology, 2022, 322, C260-C274.	2.1	7
58	Oligonucleotide Therapeutics: From Discovery and Development to Patentability. Pharmaceutics, 2022, 14, 260.	2.0	50
59	Adeno-Associated Virus (AAV)-Mediated Gene Therapy for Duchenne Muscular Dystrophy: The Issue of Transgene Persistence. Frontiers in Neurology, 2021, 12, 814174.	1.1	27
60	Nanomedicine, a valuable tool for skeletal muscle disorders: Challenges, promises, and limitations. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1777.	3.3	6

#	Article	IF	CITATIONS
61	Therapeutic Application of Extracellular Vesicles-Capsulated Adeno-Associated Virus Vector via nSMase2/Smpd3, Satellite, and Immune Cells in Duchenne Muscular Dystrophy. International Journal of Molecular Sciences, 2022, 23, 1551.	1.8	5
62	Facing Muscular Dystrophy During Covid-19 Pandemic: The Role of Support Associations and Spirituality. Pastoral Psychology, 2022, 71, 217-231.	0.4	2
63	Paeonia lactiflora extract improves the muscle function of mdx mice, an animal model of Duchenne muscular dystrophy, via downregulating the high mobility group box 1 protein. Journal of Ethnopharmacology, 2022, 289, 115079.	2.0	0
64	Sleep-related hypoventilation and hypoxemia due to neuromuscular and chest wall disorders. , 2021, , .		0
65	TLR4 is a regulator of trained immunity in a murine model of Duchenne muscular dystrophy. Nature Communications, 2022, 13, 879.	5.8	22
66	Oxidative Stress, Inflammation and Connexin Hemichannels in Muscular Dystrophies. Biomedicines, 2022, 10, 507.	1.4	5
67	Peak functional ability and age at loss of ambulation in Duchenne muscular dystrophy. Developmental Medicine and Child Neurology, 2022, 64, 979-988.	1.1	11
68	Cellular Senescence and Aging in Myotonic Dystrophy. International Journal of Molecular Sciences, 2022, 23, 2339.	1.8	5
69	Co-Administration of Simvastatin Does Not Potentiate the Benefit of Gene Therapy in the mdx Mouse Model for Duchenne Muscular Dystrophy. International Journal of Molecular Sciences, 2022, 23, 2016.	1.8	6
70	Cytoplasmic HDAC4 regulates the membrane repair mechanism in Duchenne muscular dystrophy. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 1339-1359.	2.9	11
71	Inhibition of PKCÎ, Improves Dystrophic Heart Phenotype and Function in a Novel Model of DMD Cardiomyopathy. International Journal of Molecular Sciences, 2022, 23, 2256.	1.8	1
72	The Role of Taurine in Skeletal Muscle Functioning and Its Potential as a Supportive Treatment for Duchenne Muscular Dystrophy. Metabolites, 2022, 12, 193.	1.3	10
73	CRISPR editing as a therapeutic strategy for Duchenne muscular dystrophy—anti-Cas9 immune response casts its shadow over safety and efficacy. Gene Therapy, 2022, 29, 575-577.	2.3	2
74	Four-limb wireless IMU sensor system for automatic gait detection in canines. Scientific Reports, 2022, 12, 4788.	1.6	7
75	Therapeutic Strategies for Dystrophin Replacement in Duchenne Muscular Dystrophy. Frontiers in Medicine, 2022, 9, 859930.	1.2	21
76	Neuropsychiatric comorbidities in patients with DMD. Neurologie Pro Praxi, 2022, 23, 33-35.	0.0	0
77	Dystrophin genetic variants and autism. Discover Mental Health, 2022, 2, 1.	1.0	0
78	The gRNA Vector Level Determines the Outcome of Systemic AAV CRISPR Therapy for Duchenne Muscular Dystrophy. Human Gene Therapy, 2022, 33, 518-528.	1.4	5

#	Article	IF	CITATIONS
79	Iron overload and impaired iron handling contribute to the dystrophic pathology in models of Duchenne muscular dystrophy. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 1541-1553.	2.9	5
80	Longitudinal assessment of blood-borne musculoskeletal disease biomarkers in the DE50-MD dog model of Duchenne muscular dystrophy. Wellcome Open Research, 0, 6, 354.	0.9	3
81	Proteomic profiling of carbonic anhydrase CA3 in skeletal muscle. Expert Review of Proteomics, 2021, 18, 1073-1086.	1.3	11
82	A clinical case of severe Duchenne muscular dystrophy caused by a nonsense mutation in the DMD gene in a girl. L O Badalyan Neurological Journal, 2021, 2, 227-232.	0.1	0
83	Wharton's Jelly-Derived Mesenchymal Stem Cells with High Aurora Kinase A Expression Show Improved Proliferation, Migration, and Therapeutic Potential. Stem Cells International, 2022, 2022, 1-15.	1.2	0
84	Development of Duchenne Video Assessment scorecards to evaluate ease of movement among those with Duchenne muscular dystrophy. PLoS ONE, 2022, 17, e0266845.	1.1	4
85	Disease Progression Stages and Burden in Patients with Duchenne Muscular Dystrophy Using Administrative Claims Supplemented by Electronic Medical Records. Advances in Therapy, 2022, 39, 2906-2919.	1.3	10
86	Micro-dystrophin gene constructs for repairing heart and muscle function in rats: the smaller is enough?. Gene Therapy, 2022, , .	2.3	0
87	Histopathology of Duchenne muscular dystrophy in correlation with changes in proteomic biomarkers. Histology and Histopathology, 2021, , 18403.	0.5	14
88	Ambulatory Duchenne muscular dystrophy children: cross-sectional correlation between function, quantitative muscle ultrasound and MRI Acta Myologica, 2022, 41, 1-14.	1.5	1
89	Pig models for Duchenne muscular dystrophy – from disease mechanisms to validation of new diagnostic and therapeutic concepts. Neuromuscular Disorders, 2022, 32, 543-556.	0.3	10
90	Advanced Gene-Targeting Therapies for Motor Neuron Diseases and Muscular Dystrophies. International Journal of Molecular Sciences, 2022, 23, 4824.	1.8	3
91	Matricellular Protein CCN5 Gene Transfer Ameliorates Cardiac and Skeletal Dysfunction in mdx/utrn (±) Haploinsufficient Mice by Reducing Fibrosis and Upregulating Utrophin Expression. Frontiers in Cardiovascular Medicine, 2022, 9, 763544.	1.1	2
93	Molecular Mechanisms and Current Treatment Options for Cancer Cachexia. Cancers, 2022, 14, 2107.	1.7	12
94	Letter by Duan et al Regarding Article, "Therapeutic Exon Skipping Through a CRISPR-Guided Cytidine Deaminase Rescues Dystrophic Cardiomyopathy In Vivoâ€: Circulation, 2022, 145, e872-e873.	1.6	0
95	Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. Science, 2022, 376, eabl4290.	6.0	180
96	Optimized lentiviral vector to restore full-length dystrophin via a cell-mediated approach in a mouse model of Duchenne muscular dystrophy. Molecular Therapy - Methods and Clinical Development, 2022, 25, 491-507.	1.8	3
97	miR-486 is essential for muscle function and suppresses a dystrophic transcriptome. Life Science Alliance, 2022, 5, e202101215.	1.3	10

#	Article	IF	CITATIONS
98	Casimersen for the treatment of Duchenne muscular dystrophy. Trends in Pharmacological Sciences, 2022, 43, 607-608.	4.0	12
99	Duchenne muscular dystrophy diagnosis using fibroblastâ€derived myotube cells. Pediatrics International, 2022, 64, .	0.2	Ο
100	Effectiveness of Neridronate in the Management of Bone Loss in Patients with Duchenne Muscular Dystrophy: Results from a Pilot Study. Advances in Therapy, 2022, 39, 3308-3315.	1.3	3
101	Serum extracellular vesicles for delivery of CRISPR-CAS9 ribonucleoproteins to modify the dystrophin gene. Molecular Therapy, 2022, 30, 2429-2442.	3.7	16
103	Identification of Auxiliary Biomarkers and Description of the Immune Microenvironmental Characteristics in Duchenne Muscular Dystrophy by Bioinformatical Analysis and Experiment. Frontiers in Neuroscience, 2022, 16, .	1.4	4
104	Duchenne Muscular Dystrophy With Low Acidic α-Glucosidase Activity: Two Case Reports and Literature Review. Frontiers in Pediatrics, 2022, 10, .	0.9	1
105	Examining the lineage autonomous role of β3â€integrin in muscle regeneration. FASEB Journal, 2022, 36, .	0.2	2
106	Satellite cell-specific deletion of Cipc alleviates myopathy in mdx mice. Cell Reports, 2022, 39, 110939.	2.9	4
107	Genetically modified animal models of hereditary diseases for testing of gene-directed therapy. Research Results in Pharmacology, 2022, 8, 11-26.	0.1	1
108	Dystrophin Protein Quantification as a Duchenne Muscular Dystrophy Diagnostic Biomarker in Dried Blood Spots Using Multiple Reaction Monitoring Tandem Mass Spectrometry: A Preliminary Study. Molecules, 2022, 27, 3662.	1.7	3
109	Mineralocorticoid Receptor Signaling in the Inflammatory Skeletal Muscle Microenvironments of Muscular Dystrophy and Acute Injury. Frontiers in Pharmacology, 0, 13, .	1.6	3
110	Muscle regeneration affects Adeno Associated Virus 1 mediated transgene transcription. Scientific Reports, 2022, 12, .	1.6	4
111	Current care practices for patients with Duchenne muscular dystrophy in China. Brain and Development, 2022, 44, 623-629.	0.6	0
112	<scp>RNA</scp> therapeutics in the clinic. Bioengineering and Translational Medicine, 2023, 8, .	3.9	31
113	3D in vitro Models of Pathological Skeletal Muscle: Which Cells and Scaffolds to Elect?. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2
114	Utilization of T1-Mapping for the pelvic and thigh muscles in Duchenne Muscular Dystrophy: a quantitative biomarker for disease involvement and correlation with clinical assessments. BMC Musculoskeletal Disorders, 2022, 23, .	0.8	6
115	Large-scale genome editing based on high-capacity adenovectors andÂCRISPR-Cas9 nucleases rescues full-length dystrophin synthesis in DMD muscle cells. Nucleic Acids Research, 2022, 50, 7761-7782.	6.5	9
116	Improving Recognition of Treatable Rare Neuromuscular Disorders in Primary Care: A Pilot Feasibility Study. Children, 2022, 9, 1063.	0.6	2

#	Article	IF	CITATIONS
117	Review of embryo-fetal developmental toxicity studies performed for pharmaceuticals approved by FDA in 2020 and 2021 Reproductive Toxicology, 2022, 112, 100-108.	1.3	1
119	Longitudinal assessment of blood-borne musculoskeletal disease biomarkers in the DE50-MD dog model of Duchenne muscular dystrophy. Wellcome Open Research, 0, 6, 354.	0.9	2
121	Proteomic profiling of impaired excitation–contraction coupling and abnormal calcium handling in muscular dystrophy. Proteomics, 2022, 22, .	1.3	10
122	LTBP4, SPP1, and CD40 Variants: Genetic Modifiers of Duchenne Muscular Dystrophy Analyzed in Serbian Patients. Genes, 2022, 13, 1385.	1.0	2
123	Dystrophinopathies. Cesko-Slovenska Pediatrie, 2022, 77, 198-205.	0.0	0
124	The new challenge of "exercise + X″ therapy for Duchenne muscular dystrophy—Individualized identification of exercise tolerance and precise implementation of exercise intervention. Frontiers in Physiology, 0, 13, .	1.3	2
125	Microdystrophin Therapy Rescues Impaired Na Currents in Cardiac Purkinje Fibers From Dystrophin-Deficient Mdx Mice. Circulation: Arrhythmia and Electrophysiology, 2022, 15, .	2.1	7
126	Exploring the Therapeutic Potential of Ectoine in Duchenne Muscular Dystrophy: Comparison with Taurine, a Supplement with Known Beneficial Effects in the mdx Mouse. International Journal of Molecular Sciences, 2022, 23, 9567.	1.8	5
127	The potential for Treg-enhancing therapies in tissue, in particular skeletal muscle, regeneration. Clinical and Experimental Immunology, 2023, 211, 138-148.	1.1	2
128	A New Method of Myostatin Inhibition in Mice via Oral Administration of Lactobacillus casei Expressing Modified Myostatin Protein, BLS-M22. International Journal of Molecular Sciences, 2022, 23, 9059.	1.8	3
129	Homoeopathic Management of Duchenne Muscular Dystrophy: A Case Report. Homopathic Links, 0, , .	0.1	0
130	Therapeutic Applications of the CRISPR-Cas System. Bioengineering, 2022, 9, 477.	1.6	3
131	p-TAK1 acts as a switch between myoblast proliferation phase and differentiation phase in mdx mice via regulating HO-1 expression. European Journal of Pharmacology, 2022, 933, 175277.	1.7	0
132	Inherited myopathies in the Middle East and North Africa. Gene Reports, 2022, 29, 101674.	0.4	0
133	A first-in-human phase I/IIa gene transfer clinical trial for Duchenne muscular dystrophy using rAAVrh74.MCK.GALGT2. Molecular Therapy - Methods and Clinical Development, 2022, 27, 47-60.	1.8	5
134	Role of miRNAs in muscle atrophy: the myotonic dystrophy paradigm. , 2022, , 331-362.		0
135	α-Dystrobrevin knockout mice have increased motivation for appetitive reward and altered brain cannabinoid receptor 1 expression. Acta Neuropathologica Communications, 2022, 10, .	2.4	0
137	A Therapeutic Perspective of HDAC8 in Different Diseases: An Overview of Selective Inhibitors. International Journal of Molecular Sciences, 2022, 23, 10014.	1.8	12

		CITATION REP	ORT	
#	Article		IF	CITATIONS
138	Implications of notch signaling in duchenne muscular dystrophy. Frontiers in Physiology, 0,	13,.	1.3	1
139	The Role of Associations in Reducing the Emotional and Financial Impact on Parents Caring to Children with Duchenne Muscular Dystrophy: A Cross-Cultural Study. International Journal o Environmental Research and Public Health, 2022, 19, 12334.	for f	1.2	0
141	Patient-led development of digital endpoints and the use of computer vision analysis in asse motor function in rare diseases. Frontiers in Pharmacology, 0, 13, .	ssment of	1.6	5
142	Single nuclei transcriptomics of muscle reveals intra-muscular cell dynamics linked to dystro loss and rescue. Communications Biology, 2022, 5, .	phin	2.0	15
143	The skeletal muscle phenotype of the DE50-MD dog model of Duchenne muscular dystrophy Open Research, 0, 7, 238.	y. Wellcome	0.9	3
144	Cathelicidinâ€related antimicrobial peptide mediates skeletal muscle degeneration caused b Duchenne muscular dystrophy in mice. Journal of Cachexia, Sarcopenia and Muscle, 0, , .	y injury and	2.9	2
145	Generation of two induced pluripotent stem cell (iPSC) lines from patients with Duchenne n dystrophy (IGIBi006-A and IGIBi008-A) carrying exonic deletions in the dystrophin gene. Ster Research, 2022, 64, 102927.	าuscular ท Cell	0.3	5
146	A novel bistable device to study mechanosensitive cell responses to instantaneous stretch. , 213134.	2022, 141,		1
147	An Ultra-Rare Manifestation of an X-Linked Recessive Disorder: Duchenne Muscular Dystrop Female Patient. International Journal of Molecular Sciences, 2022, 23, 13076.	hy in a	1.8	2
148	Gene Therapy for Duchenne Muscular Dystrophy: Unlocking the Opportunities in Countries Middle East and Beyond. Journal of Neuromuscular Diseases, 2022, , 1-15.	in the	1.1	0
149	Specificities of the DMD Gene Mutation Spectrum in Russian Patients. International Journal Molecular Sciences, 2022, 23, 12710.	of	1.8	0
150	Proteomic Identification of Markers of Membrane Repair, Regeneration and Fibrosis in the A Dystrophic Diaphragm. Life, 2022, 12, 1679.	ged and	1.1	7
151	Macroglossia and less advanced dystrophic change in the tongue muscle of the Duchenne n dystrophy rat. Skeletal Muscle, 2022, 12, .	nuscular	1.9	1
153	Nanomedicine for Treating Muscle Dystrophies: Opportunities, Challenges, and Future Persp International Journal of Molecular Sciences, 2022, 23, 12039.	ectives.	1.8	5
154	A Nonsense Variant in the DMD Gene Causes X-Linked Muscular Dystrophy in the Maine Coo Animals, 2022, 12, 2928.	on Cat.	1.0	4
155	Role of Matrix Metalloproteinases in Musculoskeletal Diseases. Biomedicines, 2022, 10, 247	7	1.4	11
156	Dlk1-Dio3 cluster miRNAs regulate mitochondrial functions in the dystrophic muscle in Duch muscular dystrophy. Life Science Alliance, 2023, 6, e202201506.	ienne	1.3	1
157	The Implication of Hinge 1 and Hinge 4 in Micro-Dystrophin Gene Therapy for Duchenne Mu Dystrophy. Human Gene Therapy, 2023, 34, 459-470.	scular	1.4	6

#	Article	IF	CITATIONS
158	Reclassification of DMD Duplications as Benign: Recommendations for Cautious Interpretation of Variants Identified in Prenatal Screening. Genes, 2022, 13, 1972.	1.0	5
159	Perks of Rehabilitation in Improving Motor Function in a Nine-Year-Old Male With Duchenne Muscular Dystrophy: A Case Report. Cureus, 2022, , .	0.2	0
160	On the use of D2.B10-Dmdmdx/J (D2.mdx) Versus C57BL/10ScSn-Dmdmdx/J (mdx) Mouse Models for Preclinical Studies on Duchenne Muscular Dystrophy: A Cautionary Note from Members of the TREAT-NMD Advisory Committee on Therapeutics. Journal of Neuromuscular Diseases, 2023, 10, 155-158.	1.1	2
161	A deep redox proteome profiling workflow and its application to skeletal muscle of a Duchenne Muscular Dystrophy model. Free Radical Biology and Medicine, 2022, 193, 373-384.	1.3	8
162	Antisense Oligonucleotide Therapy for the Nervous System: From Bench to Bedside with Emphasis on Pediatric Neurology. Pharmaceutics, 2022, 14, 2389.	2.0	10
163	A New Instrument to Assess Dynamic Balance in Children with Duchenne Muscular Dystrophy: Four Square Step Test and Its Validity, Reliability and Feasibility. Developmental Neurorehabilitation, 0, , 1-10.	0.5	0
164	Dual-energy X-ray absorptiometry measures of lean body mass as a biomarker for progression in boys with Duchenne muscular dystrophy. Scientific Reports, 2022, 12, .	1.6	6
165	Clinical and genetic characteristics of Chinese Duchenne/Becker muscular dystrophy patients with small mutations. Frontiers in Neuroscience, 0, 16, .	1.4	0
167	Duchenne muscular dystrophy progression induced by downhill running is accompanied by increased endomysial fibrosis and oxidative damage DNA in muscle of mdx mice. Journal of Molecular Histology, 2023, 54, 41-54.	1.0	3
168	Site-specific genome editing in treatment of inherited diseases: possibility, progress, and perspectives. Medical Review, 2022, 2, 471-500.	0.3	6
169	Histological and Histochemical Microscopy Used to Verify 2D-DIGE Pathoproteomics. Methods in Molecular Biology, 2023, , 465-480.	0.4	3
170	Bioinformatic Analysis of the Subproteomic Profile of Cardiomyopathic Tissue. Methods in Molecular Biology, 2023, , 377-395.	0.4	1
171	Verification of Protein Changes Determined by 2D-DIGE Based Proteomics Using Immunofluorescence Microscopy. Methods in Molecular Biology, 2023, , 445-464.	0.4	3
172	Longitudinal study of multi-parameter quantitative magnetic resonance imaging in Duchenne muscular dystrophy: hyperresponsiveness of gluteus maximus and detection of subclinical disease progression in functionally stable patients. Journal of Neurology, 2023, 270, 1439-1451.	1.8	4
173	Restoring Dystrophin Expression with Exon 44 and 53 Skipping in the DMD Gene in Immortalized Myotubes. Methods in Molecular Biology, 2023, , 125-139.	0.4	1
174	Histological Assessment of Gene Therapy in the Canine DMD Model. Methods in Molecular Biology, 2023, , 303-338.	0.4	0
175	Current Strategies of Muscular Dystrophy Therapeutics: An Overview. Methods in Molecular Biology, 2023, , 3-30.	0.4	2
176	MRI Evaluation of Gene Therapy in the Canine Model of Duchenne Muscular Dystrophy. Methods in Molecular Biology, 2023 339-352	0.4	0

#	Article	IF	CITATIONS
177	Retinal dystrophins and the retinopathy of Duchenne muscular dystrophy. Progress in Retinal and Eye Research, 2023, 95, 101137.	7.3	2
178	Physiological Assessment of Muscle, Heart, and Whole Body Function in the Canine Model of Duchenne Muscular Dystrophy. Methods in Molecular Biology, 2023, , 67-103.	0.4	0
179	Assessment of the Gene Therapy Immune Response in the Canine Muscular Dystrophy Model. Methods in Molecular Biology, 2023, , 353-375.	0.4	2
180	Diverse effector and regulatory functions of fibro/adipogenic progenitors during skeletal muscle fibrosis in muscular dystrophy. IScience, 2023, 26, 105775.	1.9	6
181	Control Barrier Functions for Safe Admittance Control of a Rehabilitation Cycle for DMD. , 2022, , .		0
182	Identification of immune-related features involved in Duchenne muscular dystrophy: A bidirectional transcriptome and proteome-driven analysis. Frontiers in Immunology, 0, 13, .	2.2	3
183	Extracellular Vesicle-Based Therapeutics in Neurological Disorders. Pharmaceutics, 2022, 14, 2652.	2.0	9
184	Emerging Perspectives on Gene Therapy Delivery for Neurodegenerative and Neuromuscular Disorders. Journal of Personalized Medicine, 2022, 12, 1979.	1.1	3
185	Duchenne muscular dystrophy: case series of rare inherited muscular disorder. International Journal of Advances in Medicine, 2022, 9, 1194.	0.0	0
186	Hydrogen sulfide as a therapeutic option for the treatment of Duchenne muscular dystrophy and other muscle-related diseases. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	5
187	CRISPR-Based Tools for Fighting Rare Diseases. Life, 2022, 12, 1968.	1.1	2
188	Inhibiting the inflammasome with MCC950 counteracts muscle pyroptosis and improves Duchenne muscular dystrophy. Frontiers in Immunology, 0, 13, .	2.2	9
189	CRISPR: a tool with potential for genomic reprogramming in neurological disorders. Molecular Biology Reports, 2023, 50, 1845-1856.	1.0	2
190	Synthesis of 5′-Thiol Functionalized Morpholino Oligo-Nucleotide and Subsequent Conjugation with IGT to Improve Delivery and Antisense Efficacy <i>In Vitro</i> . Bioconjugate Chemistry, 2023, 34, 174-180.	1.8	2
191	Histological Methods to Assess Skeletal Muscle Degeneration and Regeneration in Duchenne Muscular Dystrophy. International Journal of Molecular Sciences, 2022, 23, 16080.	1.8	7
192	T Cell Responses to Dystrophin in a Natural History Study of Duchenne Muscular Dystrophy. Human Gene Therapy, 2023, 34, 439-448.	1.4	5
193	Development and Validation of a Western Blot Method to Quantify Mini-Dystrophin in Human Skeletal Muscle Biopsies. AAPS Journal, 2023, 25, .	2.2	2
194	Serum inflammatory cytokines as disease biomarkers in the DE50-MD dog model of Duchenne muscular dystrophy. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	4

#	Article	IF	CITATIONS
195	Targeting the DP2 receptor alleviates muscle atrophy and dietâ€induced obesity in mice through oxidative myofiber transition. Journal of Cachexia, Sarcopenia and Muscle, 2023, 14, 342-355.	2.9	3
196	Lifelong Outcomes of Systemic Adeno-Associated Virus Micro-Dystrophin Gene Therapy in a Murine Duchenne Muscular Dystrophy Model. Human Gene Therapy, 2023, 34, 449-458.	1.4	4
197	Biological and genetic therapies for the treatment of Duchenne muscular dystrophy. Expert Opinion on Biological Therapy, 2023, 23, 49-59.	1.4	5
198	Protection of dystrophic muscle cells using Idebenone correlates with the interplay between calcium, oxidative stress and inflammation. International Journal of Experimental Pathology, 2023, 104, 4-12.	0.6	6
199	Is the fundamental pathology in Duchenne's muscular dystrophy caused by a failure of glycogenolysis–glycolysis in costameres?. Journal of Genetics, 2023, 102, .	0.4	0
200	Lipidomics—Paving the Road towards Better Insight and Precision Medicine in Rare Metabolic Diseases. International Journal of Molecular Sciences, 2023, 24, 1709.	1.8	3
201	Assessment of systemic AAV-microdystrophin gene therapy in the GRMD model of Duchenne muscular dystrophy. Science Translational Medicine, 2023, 15, .	5.8	17
202	Time to diagnosis of Duchenne muscular dystrophy in Austria and Germany. Scientific Reports, 2023, 13,	1.6	0
203	What Can RNA-Based Therapy Do for Monogenic Diseases?. Pharmaceutics, 2023, 15, 260.	2.0	1
204	P2 Receptor Signaling in Motor Units in Muscular Dystrophy. International Journal of Molecular Sciences, 2023, 24, 1587.	1.8	3
205	C5-pyrimidine-functionalized morpholino oligonucleotides exhibit differential binding affinity, target specificity and lipophilicity. Organic and Biomolecular Chemistry, 2023, 21, 1242-1253.	1.5	6
206	Towards Cardiac Risk Monitoring of Duchene Muscular Dystrophy using Lyfas. Journal of Nanotechnology in Diagnosis and Treatment, 0, 7, 25-32.	0.7	0
207	COVID-19 Mimics Pulmonary Dysfunction in Muscular Dystrophy as a Post-Acute Syndrome in Patients. International Journal of Molecular Sciences, 2023, 24, 287.	1.8	1
208	Potential Therapeutic Strategies for Skeletal Muscle Atrophy. Antioxidants, 2023, 12, 44.	2.2	12
209	L-Carnitine Functionalization to Increase Skeletal Muscle Tropism of PLGA Nanoparticles. International Journal of Molecular Sciences, 2023, 24, 294.	1.8	1
210	TRF2 rescues telomere attrition and prolongs cell survival in Duchenne muscular dystrophy cardiomyocytes derived fromÂhuman iPSCs. Proceedings of the National Academy of Sciences of the United States of America. 2023. 120	3.3	7
211	Inflammation balance in skeletal muscle damage and repair. Frontiers in Immunology, 0, 14, .	2.2	15
213	Wearable Inertial Devices in Duchenne Muscular Dystrophy: A Scoping Review. Applied Sciences (Switzerland). 2023. 13. 1268.	1.3	1

#	Article	IF	CITATIONS
214	Microdystrophin Expression as a Surrogate Endpoint for Duchenne Muscular Dystrophy Clinical Trials. Human Gene Therapy, 2023, 34, 404-415.	1.4	3
215	Next steps for the optimization of exon therapy for Duchenne muscular dystrophy. Expert Opinion on Biological Therapy, 2023, 23, 133-143.	1.4	6
216	Application of Single-Cell and Spatial Omics in Musculoskeletal Disorder Research. International Journal of Molecular Sciences, 2023, 24, 2271.	1.8	4
217	Ion Channels of the Sarcolemma and Intracellular Organelles in Duchenne Muscular Dystrophy: A Role in the Dysregulation of Ion Homeostasis and a Possible Target for Therapy. International Journal of Molecular Sciences, 2023, 24, 2229.	1.8	9
218	A manifesting female carrier of Duchenne muscular dystrophy: Importance of genetics for the dystrophinopathies. Singapore Medical Journal, 2023, 64, 81.	0.3	3
219	Synthesis and Biophysical Properties of Phosphorodiamidate Piperidino Oligomers. Organic Letters, 2023, 25, 901-906.	2.4	2
220	3D Compartmentalised Human Pluripotent Stem Cell–derived Neuromuscular Co-cultures. Bio-protocol, 2023, 13, .	0.2	7
221	Dwarf Open Reading Frame (DWORF) Gene Therapy Ameliorated Duchenne Muscular Dystrophy Cardiomyopathy in Aged mdx Mice. Journal of the American Heart Association, 2023, 12, .	1.6	7
222	High‧peed <scp>T₂</scp> â€Corrected Multiecho Magnetic Resonance Spectroscopy for Quantitatively Detecting Skeletal Muscle Fatty Infiltration and Predicting the Loss of Ambulation in Patients With Duchenne Muscular Dystrophy. Journal of Magnetic Resonance Imaging, 2023, 58, 1270-1278.	1.9	1
223	The P2X7 purinoceptor in pathogenesis and treatment of dystrophino- and sarcoglycanopathies. Current Opinion in Pharmacology, 2023, 69, 102357.	1.7	0
224	A novel function for eukaryotic elongation factor 3: Inhibition of stop codon readthrough in yeast. Archives of Biochemistry and Biophysics, 2023, 740, 109580.	1.4	0
225	Duchenne muscular dystrophy: Current treatment and emerging exon skipping and gene therapy approach. European Journal of Pharmacology, 2023, 947, 175675.	1.7	11
226	Self-transfecting GMO-PMO chimera targeting Nanog enable gene silencing inÂvitro and suppresses tumor growth in 4T1 allografts in mouse. Molecular Therapy - Nucleic Acids, 2023, 32, 203-228.	2.3	4
227	Histopathologic Changes of the Esophagus in Duchenne Muscular Dystrophy. International Journal of Surgical Pathology, 2024, 32, 17-20.	0.4	0
228	Lipin1 plays complementary roles in myofibre stability and regeneration in dystrophic muscles. Journal of Physiology, 2023, 601, 961-978.	1.3	2
229	<i>DMD</i> Genotypes and Motor Function in Duchenne Muscular Dystrophy. Neurology, 2023, 100, .	1.5	7
230	Muscle Pathology in Dystrophic Rats and Zebrafish Is Unresponsive to Taurine Treatment, Compared to the mdx Mouse Model for Duchenne Muscular Dystrophy. Metabolites, 2023, 13, 232.	1.3	1
231	Modeling Reduced Contractility and Stiffness Using iPSC-Derived Cardiomyocytes Generated From Female Becker Muscular Dystrophy Carrier. JACC Basic To Translational Science, 2023, 8, 599-613.	1.9	1

#	Article	IF	CITATIONS
232	New Therapeutic Approaches to Duchenne Muscular Dystrophy. The Journal of the Japanese Society of Internal Medicine, 2022, 111, 315-322.	0.0	0
233	Urine titin as a novel biomarker for Duchenne muscular dystrophy. Neuromuscular Disorders, 2023, 33, 302-308.	0.3	2
234	Escape from X-inactivation in twins exhibits intra- and inter-individual variability across tissues and is heritable. PLoS Genetics, 2023, 19, e1010556.	1.5	8
235	Delivery challenges for CRISPR—Cas9 genome editing for Duchenne muscular dystrophy. Biophysics Reviews, 2023, 4, .	1.0	2
236	Downregulation of Dystrophin Expression Occurs across Diverse Tumors, Correlates with the Age of Onset, Staging and Reduced Survival of Patients. Cancers, 2023, 15, 1378.	1.7	1
237	Histone Deacetylases: Molecular Mechanisms and Therapeutic Implications for Muscular Dystrophies. International Journal of Molecular Sciences, 2023, 24, 4306.	1.8	10
238	High-capacity adenovector delivery of forced CRISPR-Cas9 heterodimers fosters precise chromosomal deletions in human cells. Molecular Therapy - Nucleic Acids, 2023, 31, 746-762.	2.3	2
239	Integration of Task-Based Exoskeleton with an Assist-as-Needed Algorithm for Patient-Centered Elbow Rehabilitation. Sensors, 2023, 23, 2460.	2.1	4
241	Recent Trends in Antisense Therapies for Duchenne Muscular Dystrophy. Pharmaceutics, 2023, 15, 778.	2.0	9
242	The bi-directional relationship between sleep and inflammation in muscular dystrophies: A narrative review. Neuroscience and Biobehavioral Reviews, 2023, 150, 105116.	2.9	1
243	The Dilemma of Choice for Duchenne Patients Eligible for Exon 51 Skipping The European Experience. Journal of Neuromuscular Diseases, 2023, 10, 315-325.	1.1	2
244	Unusually severe muscular dystrophy upon in-frame deletion of the dystrophin rod domain and lack of compensation by membrane-localized utrophin. Med, 2023, 4, 245-251.e3.	2.2	0
245	The Future of Exon Skipping for Duchenne Muscular Dystrophy. Human Gene Therapy, 2023, 34, 372-378.	1.4	6
247	Change in the spectrum of detected mutations in the <i>DMD</i> gene depending on the methodological capabilities of the laboratory. Nervno-Myshechnye Bolezni, 2023, 13, 33-43.	0.2	1
248	Multiomic characterization of disease progression in mice lacking dystrophin. PLoS ONE, 2023, 18, e0283869.	1.1	5
249	Promising Treatments for Duchenne Muscular Dystrophy: Restoring Dystrophin Protein Expression Using Nucleic Acid Therapeutics. , 0, , .		0
250	Growth hormone secretagogues modulate inflammation and fibrosis in mdx mouse model of Duchenne muscular dystrophy. Frontiers in Immunology, 0, 14, .	2.2	1
251	Enveloped viruses pseudotyped with mammalian myogenic cell fusogens target skeletal muscle for gene delivery. Cell, 2023, 186, 2062-2077.e17.	13.5	5

#	Article	IF	CITATIONS
252	Targeted regulation of TAK1 counteracts dystrophinopathy in a DMD mouse model. JCI Insight, 2023, 8, .	2.3	0
253	Sleep apnoea and hypoventilation in patients with five major types of muscular dystrophy. BMJ Open Respiratory Research, 2023, 10, e001506.	1.2	3
254	AMPK is mitochondrial medicine for neuromuscular disorders. Trends in Molecular Medicine, 2023, 29, 512-529.	3.5	5
255	Encapsulation in skeletal muscle. , 2023, , 457-468.		0
256	Social cognition in DMD and BMD dystrophinopathies: A cross-sectional preliminary study. Clinical Neuropsychologist, 2024, 38, 219-234.	1.5	3
263	A Virtual Reality Exergame: Clinician-Guided Breathing and Relaxation for Children with Muscular Dystrophy. , 2023, , .		0
281	Duchenne muscular dystrophy: pathogenesis and promising therapies. Journal of Neurology, 2023, 270, 3733-3749.	1.8	9
296	TO MARKET, TO MARKET–2021: MACROMOLECULAR THERAPEUTICS. Medicinal Chemistry Reviews, 0, , 733-805.	0.1	0
323	Case report: A rare case of left ventricular noncompaction in two Chinese siblings with becker muscular dystrophy caused by deletion of exons 10 to 12 in the DMD gene. Frontiers in Cardiovascular Medicine, 0, 10, .	1.1	0
344	Advanced Physiotherapy Intervention for Muscular Dystrophy. , 0, , .		1
361	Dystrophin- and Utrophin-Based Therapeutic Approaches for Treatment of Duchenne Muscular Dystrophy: A Comparative Review. BioDrugs, 2024, 38, 95-119.	2.2	1
408	Modulation of neural circuits by melatonin in neurodegenerative and neuropsychiatric disorders. Naunyn-Schmiedeberg's Archives of Pharmacology, 0, , .	1.4	0
419	Oligonucleotides and mRNA Therapeutics. , 2024, , 291-321.		0
422	MuSCs and IPCs: roles in skeletal muscle homeostasis, aging and injury. Cellular and Molecular Life Sciences, 2024, 81, .	2.4	0
427	Heart-on-a-chip systems: disease modeling and drug screening applications. Lab on A Chip, 2024, 24, 1494-1528.	3.1	0
432	Dystrophinopathies. Current Clinical Neurology, 2023, , 11-36.	0.1	0
433	The Role of the Muscle Biopsy in the Era of Genetic Diagnosis. Current Clinical Neurology, 2023, , 255-267.	0.1	0
435	Muscle stem cell dysfunction in rhabdomyosarcoma and muscular dystrophy. Current Topics in Developmental Biology, 2024, , .	1.0	0

ATION RE

#	Article	IF	CITATIONS
440	Decoding the forces that shape muscle stem cell function. Current Topics in Developmental Biology, 2024, , .	1.0	0
442	Molecular regulation of myocyte fusion. Current Topics in Developmental Biology, 2024, , .	1.0	0