The Use and Misuse of Mathematical Modeling for Infector the COVID-19 Pandemic

Medical Decision Making 41, 379-385

DOI: 10.1177/0272989x21990391

Citation Report

#	Article	IF	CITATIONS
2	The pitfalls of modelling the effects of COVID-19 on gender-based violence: lessons learnt and ways forward. BMJ Global Health, 2021, 6, e005739.	2.0	6
3	Global Analysis of a piecewise smooth epidemiological model of COVID-19. Nonlinear Dynamics, 2021, 105, 3763-3773.	2.7	6
4	Functional data analysis characterizes the shapes of theÂfirst COVID-19 epidemicÂwave in Italy. Scientific Reports, 2021, 11, 17054.	1.6	24
5	<i>covid19.Explorer</i> : a web application and R package to explore United States COVID-19 data. PeerJ, 2021, 9, e11489.	0.9	5
6	Spring 2020 COVID-19 community transmission behaviours around New York City medical facilities. Infection Prevention in Practice, 2021, 3, 100158.	0.6	3
7	Mathematical analysis of the dynamics of COVIDâ€19 in Africa under the influence of asymptomatic cases and reâ€infection. Mathematical Methods in the Applied Sciences, 2022, 45, 137-149.	1.2	5
8	Age-stratified transmission model of COVID-19 in Ontario with human mobility during pandemic's first wave. Heliyon, 2021, 7, e07905.	1.4	13
9	A data-driven model for COVID-19 pandemic – Evolution of the attack rate and prognosis for Brazil. Chaos, Solitons and Fractals, 2021, 152, 111359.	2.5	11
10	Opportunities and Challenges in Developing COVID-19 Simulation Models: Lessons from Six Funded Projects. , 2021, , .		5
12	COVID-19 underreporting and its impact on vaccination strategies. BMC Infectious Diseases, 2021, 21, 1111.	1.3	40
14	Adventures in COVID-19 Policy Modeling: Education Edition. Current HIV/AIDS Reports, 2022, 19, 94-100.	1.1	4
15	Dynamical analysis of coronavirus disease with crowding effect, and vaccination: a study of third strain. Nonlinear Dynamics, 2022, 107, 3963-3982.	2.7	26
16	Respiratory infectious disease outbreaks among people experiencing homelessness: a systematic review of prevention and mitigation strategies. Annals of Epidemiology, 2023, 77, 127-135.	0.9	5
17	Opportunities and Barriers to the Development and Use of Open Source Health Economic Models: A Survey. Value in Health, 2022, 25, 473-479.	0.1	9
18	On the role of data, statistics and decisions in a pandemic. AStA Advances in Statistical Analysis, 2022, 106, 349-382.	0.4	14
19	Model-Based Planning and Delivery of Mass Vaccination Campaigns against Infectious Disease: Application to the COVID-19 Pandemic in the UK. Vaccines, 2021, 9, 1460.	2.1	8
20	Non-pharmaceutical interventions during COVID-19 in the UK and Spain: a rapid realist review. Open Research Europe, 0, 2, 52.	2.0	0
21	A linear dynamical perspective on epidemiology: interplay between early COVID-19 outbreak and human mobility. Nonlinear Dynamics, 2022, , 1-20.	2.7	2

#	Article	IF	CITATIONS
22	Modeling to inform economyâ€wide pandemic policy: Bringing epidemiologists and economists together. Health Economics (United Kingdom), 2022, 31, 1291-1295.	0.8	3
23	Infectious disease modelling for SARS-CoV-2 in Africa to guide policy: A systematic review. Epidemics, 2022, 40, 100610.	1.5	6
24	Use of Modeling to Inform Decision Making in North Carolina during the COVID-19 Pandemic: A Qualitative Study. MDM Policy and Practice, 2022, 7, 238146832211163.	0.5	2
26	Non-pharmaceutical interventions during COVID-19 in the UK and Spain: a rapid realist review. Open Research Europe, 0, 2, 52.	2.0	0
27	Modelling of a triage scoring tool for SARS-COV-2 PCR testing in health-care workers: data from the first German COVID-19 Testing Unit in Munich. BMC Infectious Diseases, 2022, 22, .	1.3	1
28	The African swine fever modelling challenge: Model comparison and lessons learnt. Epidemics, 2022, 40, 100615.	1.5	12
29	An evaluation of prospective COVID-19 modelling studies in the USA: from data to science translation. The Lancet Digital Health, 2022, 4, e738-e747.	5 . 9	19
30	Real-time COVID-19 forecasting: challenges and opportunities of model performance and translation. The Lancet Digital Health, 2022, 4, e699-e701.	5.9	6
31	Using Epidemic Modeling, Machine Learning and Control Feedback Strategy for Policy Management of COVID-19. IEEE Access, 2022, 10, 98244-98258.	2.6	4
32	Plankton digital twins—a new research tool. Journal of Plankton Research, 0, , .	0.8	3
33	Combining and comparing regional SARS-CoV-2 epidemic dynamics in Italy: Bayesian meta-analysis of compartmental models and global sensitivity analysis. Frontiers in Public Health, $0,10,10$	1.3	0
34	Uncertainty Phobia and Epistemic Forbearance in a Pandemic. Royal Institute of Philosophy Supplement, 2022, 92, 271-291.	0.1	1
37	Insights into the quantification and reporting of model-related uncertainty across different disciplines. IScience, 2022, 25, 105512.	1.9	8
38	Human papillomavirus vaccination strategies for accelerating action towards cervical cancer elimination. The Lancet Global Health, 2023, 11, e4-e5.	2.9	3
39	Impact of the COVID-19 Pandemic on Gyne-Oncological Treatment—A Retrospective Single-Center Analysis of a German University Hospital with 30,525 Patients. Healthcare (Switzerland), 2022, 10, 2386.	1.0	1
40	Entropy-Based Informational Study of the COVID-19 Series of Data. Mathematics, 2022, 10, 4590.	1.1	3
41	Backcasting COVID-19: a physics-informed estimate for early case incidence. Royal Society Open Science, 2022, 9, .	1.1	3
42	Inferring ASF transmission in domestic pigs and wild boars using a paired model iterative approach. Epidemics, 2023, 42, 100665.	1.5	4

#	Article	IF	CITATIONS
43	Recursive Forecasting for Vaccination Demand with Hybrid Feature LSTM considering Heterogeneous Policies and Risk Perception. Expert Systems With Applications, 2023, , 119545.	4.4	0
44	Towards Reusable Building Blocks to Develop COVID-19 Simulation Models. , 2022, , .		2
45	Frequent and unpredictable changes in COVID-19 policies and restrictions reduce the accuracy of model forecasts. Scientific Reports, 2023, 13 , .	1.6	1
46	A Bayesian analysis of the efficacy of Covid-19 lockdown measures. , 2023, , 123-138.		0
47	Accounting for historical injustices in mathematical models of infectious disease transmission: An analytic overview. Epidemics, 2023, 43, 100679.	1.5	3
49	Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations. ELife, 0, 12, .	2.8	14
63	An Extended Fractional SEIR Model to Predict the Spreading Behavior of COVID-19 Disease using Monte Carlo Back Sampling. Springer Optimization and Its Applications, 2023, , 3-20.	0.6	0