Pressure dependence of structural, elastic, electronic, the properties of van der Waals-type NaSn2P2 pnictide supstudy

Results in Physics 21, 103848

DOI: 10.1016/j.rinp.2021.103848

Citation Report

#	Article	IF	CITATIONS
1	A comprehensive study of the thermophysical and optoelectronic properties of Nb2P5 via ab-initio technique. Results in Physics, 2021, 28, 104623.	4.1	20
2	A comprehensive DFT based insights into the physical properties of tetragonal superconducting Mo5PB2. Results in Physics, 2021, 28, 104612.	4.1	24
3	First-Principles Prediction of Pressure Dependent Mechanical, Electronic, Optical, and Superconducting State Properties of NaC6: A Potential High-Tc Superconductor. SSRN Electronic Journal, 0, , .	0.4	0
4	Properties of RbHgF3 fluoro-perovskite under growing hydrostatic pressure from first-principles calculations. AIP Advances, 2021, 11 , .	1.3	9
5	First-principles prediction of pressure dependent mechanical, electronic, optical, and superconducting state properties of NaC6: A potential high-Tc superconductor. Results in Physics, 2022, 33, 105182.	4.1	11
6	First-principles insights into mechanical, optoelectronic, and thermo-physical properties of transition metal dichalcogenides ZrX2 ($X=S$, Se, and Te). AIP Advances, 2022, 12, .	1.3	16
7	Dual topology in van der Waals-type superconductor Nb2S2C. Tungsten, 2023, 5, 357-363.	4.8	6
8	Mechanical and opto-electronic properties of \hat{l} ±-MoSi2: a DFT scheme with hydrostatic pressure. Indian Journal of Physics, 2022, 96, 4155-4172.	1.8	5
9	Band gap engineering to stimulate the optoelectronic performance of lead-free halide perovskites RbGeX3 (X = Cl, Br) under pressure. Journal of Materials Science: Materials in Electronics, 2022, 33, 13860-13875.	2.2	13
10	Comparison Among Various Physical Properties of Perovskite Oxides Bamo3 (M = Ru, Os) for Predicting Potential Applications. SSRN Electronic Journal, 0, , .	0.4	0
11	Effect of Pressure on the Superconducting Transition Temperature and Physical Properties of CaPd ₂ P ₂ : A DFT Investigation. ACS Omega, 2022, 7, 21528-21536.	3.5	5
12	AbstAb-initio insights into the elastic, bonding, phonon, optoelectronic and thermophysical properties of SnTaS2. Solid State Sciences, 2022, 131, 106947.	3.2	12
13	Ab Initio Study of Structural, Electronic, Elastic, Mechanical, and Optical Properties of K4XP2 (XÂ=ÂZn,) Tj ETQq	0 0 0 rgBT 2.7	Oyerlock 10
14	First principles calculation to investigate the structural, electronic, elastic, mechanical, and optical properties of K2NiP2 ternary compound. AIP Advances, 2022, 12, .	1.3	3
16	Analyzing the physical properties of perovskite oxides BaMO3 (M = Ru, Os) for predicting potential applications. Computational Condensed Matter, 2023, 34, e00782.	2.1	5
17	A comparative study of the structural, elastic, thermophysical, and optoelectronic properties of CaZn2X2 (XÂ=ÂN, P, As) semiconductors via ab-initio approach. Results in Physics, 2023, 44, 106214.	4.1	5
18	Band gap tuning of non-toxic Sr-based perovskites CsSrX3 (XÂ=ÂCl, Br) under pressure for improved optoelectronic applications. Materials Today Communications, 2023, 34, 105188.	1.9	10
19	Pressure-dependent semiconductor–metal transition and elastic, electronic, optical, and thermophysical properties of orthorhombic SnS binary chalcogenide. Results in Physics, 2023, 45, 106236.	4.1	2

#	Article	IF	CITATIONS
20	Elastic, electronic, optical, and thermodynamic properties of M $<$ sub $>2<$ /sub $>$ SeC (M = Hf, Zr) under high pressure. AIP Advances, 2023, 13, 025154.	1.3	0
21	First-Principles Studies in Pd-Based \$\${varvec{R}}{{varvec{P}}{varvec{d}}}_{2}{{varvec{P}}}_{2}\$\$ÂÂ(R = Pr and Nd) Superconductors Under Pressure. Journal of Superconductivity and Novel Magnetism, 2023, 36, 885-902.	1.8	3
22	An atomistic modeling study of high-throughput RVO3(R=La, Nd) perovskites for efficient solar energy conversion materials. Physica B: Condensed Matter, 2023, 660, 414879.	2.7	4
23	DFT based comparative analysis of the physical properties of some binary transition metal carbides XC (X = Nb, Ta, Ti). Journal of Materials Research and Technology, 2023, 24, 4808-4832.	5.8	8
25	ThirGe superconductor: First-principles insights into the optoelectronic, mechanical stability, thermophysical, and superconducting properties. Journal of Physics and Chemistry of Solids, 2023, 179, 111413.	4.0	4
26	Pressure-Induced Superconductivity in CsFe2As2. Journal of Superconductivity and Novel Magnetism, 0, , .	1.8	0
27	Unveiling the mechanical and dynamical stability to the contribution of transport properties of FeNbSb: A first principle approach. Computational Condensed Matter, 2023, 36, e00821.	2.1	2
28	Pressure-induced physical properties of alkali metal chlorides Rb2NbCl6: A density functional theory study. AIP Advances, 2023, 13, .	1.3	4
29	Investigation of the Influence of Pressure on the Physical Properties and Superconducting Transition Temperature of Chiral Noncentrosymmetric TaRh ₂ B ₂ and NbRh ₂ B ₂ . ACS Omega, 2023, 8, 21813-21822.	3.5	2
31	Superconductivity and thermodynamic properties of MPb7 (M=Al, Mg) compounds: A first principles study. Solid State Communications, 2023, 371, 115282.	1.9	0
32	Pressure-induced physical properties in topological semi-metal TaM $<$ sub $>$ 2 $<$ /sub $>$ (M = As, Sb). RSC Advances, 2023, 13, 22088-22100.	3.6	1
33	Thermodynamic investigation of a melted metal drop-in layered synthesis. AIP Conference Proceedings, 2023, , .	0.4	O
34	Phase stability, mechanical and thermodynamic properties of (Hf, Zr, Ta, M)B2 (M= Nb, Ti, Cr, W) quaternary high-entropy diboride ceramics via first-principles calculations. Ceramics International, 2023, 49, 33255-33264. I properties in topological semi-metals < mml:math	4.8	4
35	xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math	mml:mn>2 4.1	2 2
36	<pre><mihl:math space="" width="0.166667em" xihlns:mihl="http://www.w3.org/1998/Math/MathML"></mihl:math> <mmhhhi altimg="si1.svg"> <mml:mrow> <mml:mrow> <mml:mi mathvariant="bold"> C</mml:mi> <mml:mi mathvariant="bold"> e</mml:mi> <mml:mi mathvariant="bold"> R</mml:mi> <mml:mi mathvariant="bold"> h</mml:mi> </mml:mrow></mml:mrow></mmhhhi></pre>	2.7	2
37	mathvariant="bold">2 <mml:msub><mml:mrow><mml:mi mathvariant="bold">A Structural, elastic, electronic, bonding, thermo-mechanical and optical properties of predicted NbAlB MAB phase in comparison to MoAlB: DFT based ab-initio insights. Results in Physics, 2023, 52, 106921.</mml:mi></mml:mrow></mml:msub>	4.1	O
38	High-Throughput screening of inorganic lead-free halide perovskites CsCu2X3 (X = Cl, Br, I) for optoelectronics applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2024, 299, 116928.	3.5	2
39	Exploration of the structural, vibrational, electronic, mechanical and thermal properties of Ru ₄ Al ₃ 8 ₂ and Ru ₉ Al ₃ 8 ₈ : a DFT study. RSC Advances, 2023, 13, 28912-28930.	3. 6	1

#	ARTICLE	IF	CITATIONS
40	A comparative study of the physical properties of layered transition metal nitride halides MNCl (M =) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5
42	Ab-initio insights into the structural, elastic, bonding, and thermophysical properties of UH ($x = 1, 2, 3$,) Tj ETQq1 21, 100500.	0.78431 1.8	4 rgBT /O <mark>ve</mark> r 0
44	A comprehensive first-principles insights into the physical properties of binary intermetallic Zr3Ir compound. Results in Materials, 2024, 21, 100518.	1.8	0
45	Investigation of pressure impact on physical characteristics of FeSe chalcogenide superconductor: Insights from first principles calculation. Computational Materials Science, 2024, 234, 112798.	3.0	0
46	Effect of bandgap tunability on the physical attributes of potassium-based K2CuBiX6 (XÂ=ÂI, Br, Cl) double perovskites for green technologies. Inorganic Chemistry Communication, 2024, 162, 112206.	3.9	0
47	First-principles pressure dependent investigation of the physical properties of KB2H8: A prospective high-TC superconductor. Results in Physics, 2024, 58, 107498.	4.1	0
48	DFT simulation to study the physical properties of ternary intermetallic materials ACuSb (A=Ca, Sr, Ba) for solar cell and TBC materials. Computational Condensed Matter, 2024, 39, e00900.	2.1	0