Deep Dyna-Reinforcement Learning Based on Random Networks

IEEE Internet of Things Journal 9, 14818-14828 DOI: 10.1109/jiot.2021.3112907

Citation Report

#	Article	IF	CITATIONS
1	Equilibrated and Fast Resources Allocation for Massive and Diversified MTC Services Using Multiagent Deep Reinforcement Learning. IEEE Internet of Things Journal, 2023, 10, 664-681.	8.7	1
2	DRL based Joint Affective Services Computing and Resource Allocation in ISTN. ACM Transactions on Multimedia Computing, Communications and Applications, 2022, 18, 1-19.	4.3	4
3	Combustion Optimization Under Deep Peak Shaving Based on DYNA-A3C With Dynamic Weight. Frontiers in Energy Research, 0, 10, .	2.3	1
4	Deep-Reinforcement-Learning-Based NOMA-Aided Slotted ALOHA for LEO Satellite IoT Networks. IEEE Internet of Things Journal, 2023, 10, 17772-17784.	8.7	0
5	Random Access Protocol for Massive Internet of Things Connectivity in Space–Air–Ground-Integrated Networks. IEEE Internet of Things Journal, 2023, 10, 20442-20457.	8.7	3
6	A Channel Perceiving-Based Handover Management in Space–Ground Integrated Information Network. IEEE Transactions on Network and Service Management, 2024, 21, 882-896.	4.9	0
7	A Novel Model based Energy Management Strategy for Plug-in Hybrid Electric Vehicles using Deep Reinforcement Learning. , 2023, , .		0
8	An Access Control Scheme Combining Q-Learning and Compressive Random Access for Satellite IoT. IEEE Communications Letters, 2023, 27, 3008-3012.	4.1	0
9	Asynchronous Random Access Systems With Immediate Collision Resolution for Low Power Wide Area Networks. IEEE Transactions on Vehicular Technology, 2024, 73, 2755-2770.	6.3	0
10	Transmission Control Considering Different Available Channels for CRDSA/IRSA in Satellite IoT Systems. IEEE Access, 2023, 11, 135377-135384.	4.2	0
11	Trends in LPWAN Technologies for LEO Satellite Constellations in the NewSpace Context. Electronics (Switzerland), 2024, 13, 579.	3.1	0