A proposed global layout of carbon capture and storage

Nature Climate Change 11, 112-118 DOI: 10.1038/s41558-020-00960-0

Citation Report

#	Article	IF	CITATIONS
1	Undoing Equivalence: Rethinking Carbon Accounting for Just Carbon Removal. Frontiers in Climate, 2021, 3, .	2.8	50
2	Recovery of Magnesium from Industrial Effluent and Its Implication on Carbon Capture and Storage. ACS Sustainable Chemistry and Engineering, 2021, 9, 6732-6740.	6.7	10
3	Long-term temperature and sea-level rise stabilization before and beyond 2100: Estimating the additional climate mitigation contribution from China's recent 2060 carbon neutrality pledge. Environmental Research Letters, 2021, 16, 074032.	5.2	54
4	Assessing Representative CCUS Layouts for China's Power Sector toward Carbon Neutrality. Environmental Science & Technology, 2021, 55, 11225-11235.	10.0	71
5	TiO ₂ Coating Strategy for Robust Catalysis of the Metal–Organic Framework toward Energy-Efficient CO ₂ Capture. Environmental Science & Technology, 2021, 55, 11216-11224.	10.0	38
6	Swelling response of anthracite coal during CH ₄ -CO ₂ competitive adsorption by molecular simulation. Molecular Physics, 2021, 119, .	1.7	3
7	Porous CaO–MgO Nanostructures for CO ₂ Capture. ACS Applied Nano Materials, 2021, 4, 10969-10975.	5.0	18
8	Regional emission pathways, energy transition paths and cost analysis under various effort-sharing approaches for meeting Paris Agreement goals. Energy, 2021, 232, 121024.	8.8	11
9	Sensitivity Analysis of Geomechanical Constraints in CO2 Storage to Screen Potential Sites in Deep Saline Aquifers. Frontiers in Climate, 2021, 3, .	2.8	7
10	Observing technology reserves of carbon capture and storage via patent data: Paving the way for carbon neutral. Technological Forecasting and Social Change, 2021, 171, 120933.	11.6	43
11	Biologically-mediated carbon capture and utilization by microalgae towards sustainable CO2 biofixation and biomass valorization – A review. Chemical Engineering Journal, 2022, 427, 130884.	12.7	192
12	The role of carbon capture, utilization and storage in realizing China's carbon neutrality: A source-sink matching analysis for existing coal-fired power plants. Resources, Conservation and Recycling, 2022, 178, 106070.	10.8	33
13	Water-Dispersible Nanocatalysts with Engineered Structures: The New Generation of Nanomaterials for Energy-Efficient CO ₂ Capture. ACS Applied Materials & Interfaces, 2021, 13, 57294-57305.	8.0	9
14	Climate or Mitigation Engineering Management. Engineering, 2021, , .	6.7	0
15	Sustainability-inspired upcycling of waste polyethylene terephthalate plastic into porous carbon for CO ₂ capture. Green Chemistry, 2022, 24, 1494-1504.	9.0	51
16	Panorama mondial des potentiels de stockage géologique du CO2. Annales Des Mines - Responsabilité Et Environnement, 2022, Nº 105, 21-25.	0.1	0
17	Characterization of carbon dioxide leakage process along faults in the laboratory. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14, 674-688.	8.1	3
18	Laboratory demonstration of the stability of CO2 hydrates in deep-oceanic sediments. Chemical Engineering Journal, 2022, 432, 134290.	12.7	31

#	ARTICLE Glycine-Mediated Leaching-Mineralization Cycle for Co2 Sequestration and Vaterite Production from	IF	Citations
20	Coal Fly Ash: Dual Functions of Glycine as a Proton Donor and Receptor. SSRN Electronic Journal, 0, ,	0.4	0
21	Lightâ€Induced Redox Looping of a Rhodium/Ce _{<i>x</i>} WO ₃ Photocatalyst for Highly Active and Robust Dry Reforming of Methane. Angewandte Chemie - International Edition, 2022, 61, .	13.8	48
22	Engineered assembly of water-dispersible nanocatalysts enables low-cost and green CO2 capture. Nature Communications, 2022, 13, 1249.	12.8	42
23	Carbon Capture and Storage: History and the Road Ahead. Engineering, 2022, 14, 33-43.	6.7	39
24	Towards singleâ€atom photocatalysts for future carbonâ€neutral application. SmartMat, 2022, 3, 417-446.	10.7	35
25	Lightâ€Induced Redox Looping of a Rhodium/Ce _{<i>x</i>} WO ₃ Photocatalyst for Highly Active and Robust Dry Reforming of Methane. Angewandte Chemie, 2022, 134, .	2.0	7
26	Assessment of CO2 geological storage capacity based on adsorption isothermal experiments at various temperatures: A case study of No. 3 coal in the Qinshui Basin. Petroleum, 2023, 9, 274-284.	2.8	11
27	Enhanced activity and stability of SO42â^'/ZrO2 by addition of Cu combined with CuZnOZrO2 for direct synthesis of dimethyl ether from CO2 hydrogenation. International Journal of Hydrogen Energy, 2022, 47, 41374-41385.	7.1	11
28	Decarbonizing the power and industry sectors in India by carbon capture and storage. Energy, 2022, 249, 123751.	8.8	20
29	Synthesis of dual-functionalized APTES-Bentonite/PVDF mixed-matrix membranes for the efficient separation of CO2/CH4 and CO2/N2. Materials Today Communications, 2022, 31, 103431.	1.9	3
30	Review on CH4-CO2 replacement for CO2 sequestration and CH4/CO2 hydrate formation in porous media. Fuel, 2022, 320, 123795.	6.4	42
31	Advances, challenges, and perspectives for CCUS source-sink matching models under carbon neutrality target. , 2022, 1, 1.		14
32	Analysis and simulation of BECCS vertical integration model in China based on evolutionary game and system dynamics. Energy, 2022, 252, 124000.	8.8	5
33	Carbon dioxide capture, transport and storage supply chains: Optimal economic and environmental performance of infrastructure rollout. International Journal of Greenhouse Gas Control, 2022, 117, 103635.	4.6	37
34	Unveiling redox mechanism at the iron centers in the mechanochemically activated conversion of CO2 in the presence of olivine. Journal of Materials Science, 2022, , 1-11.	3.7	1
35	Underground Sources of Drinking Water (Usdw) Chemistry Changes in Response to Potential Co2 Leakage. SSRN Electronic Journal, 0, , .	0.4	0
36	A review on granulation of CaO-based sorbent for carbon dioxide capture. Chemical Engineering Journal, 2022, 446, 136880.	12.7	10
37	Linking SDG 7 to assess the renewable energy footprint of nations by 2030. Applied Energy, 2022, 317, 119167.	10.1	42

#	Article	IF	CITATIONS
38	Effect of H2S content on relative permeability and capillary pressure characteristics of acid gas/brine/rock systems: A review. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14, 2003-2033.	8.1	7
39	Several key issues for CCUS development in China targeting carbon neutrality. , 2022, 1, .		14
40	Obstacle Identification and Analysis to the Commercialization of CCUS Technology in China under the Carbon Neutrality Target. Energies, 2022, 15, 3964.	3.1	5
41	Coupled Geomechanical and Fault Activation Modeling during CO ₂ Injection into the Dhruma Reservoir: A Study Focused on Mitigating CO ₂ Emissions. , 2022, , .		0
42	Salt-Induced Enhancement of Thermodynamic and Kinetic Co2 Selectivity in Co2 + N2 Hydrate Formation and its Significance for Co2 Sequestration. SSRN Electronic Journal, 0, , .	0.4	0
43	Feasibility Trade-Offs in Decarbonisation of Power Sector with High Coal Dependence: A Case of Korea. SSRN Electronic Journal, 0, , .	0.4	0
44	Significance of extra-framework monovalent and divalent cation motion upon CO2 and N2 sorption in zeolite X. Materials Today: Proceedings, 2022, 68, 85-92.	1.8	2
45	Recent advances in direct air capture by adsorption. Chemical Society Reviews, 2022, 51, 6574-6651.	38.1	89
46	Facile Synthesis of MgO Nanoparticle-Embedded Fe/N/S Codoped Carbon Materials from Oily Sludge for Efficient CO ₂ Capture. ACS ES&T Engineering, 2022, 2, 1643-1650.	7.6	1
47	Sequential Value of Information for Subsurface Exploration Drilling. Natural Resources Research, 2022, 31, 2413-2434.	4.7	3
48	Underground sources of drinking water chemistry changes in response to potential CO2 leakage. Science of the Total Environment, 2022, 847, 157254.	8.0	2
49	Carbon capture in power sector of China towards carbon neutrality and its comparison to renewable power. Fundamental Research, 2022, , .	3.3	2
50	Carbonic anhydrase membranes for carbon capture and storage. , 2022, 2, 100031.		4
51	A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality. Renewable and Sustainable Energy Reviews, 2022, 167, 112537.	16.4	176
52	КлÐ,маÑ,Ð,чеÑкую Ð;овеÑÑ,ку нÐ,ĐºÑ,о не оÑ,менÑĐ»: Ð;очеE)¼ÃÑ₽ ÑÑ,I	о важ
53	Investment in CO2 capture and storage combined with enhanced oil recovery in China: A case study of China's first megaton-scale project. Journal of Cleaner Production, 2022, 373, 133724.	9.3	7
54	Framing climate change mitigation technology: The impact of risk versus benefit messaging on support for carbon capture and storage. International Journal of Greenhouse Gas Control, 2022, 119, 103737.	4.6	7

55	NaCl-induced enhancement of thermodynamic and kinetic CO2 selectivity in CO2Â+ÂN2 hydrate formation and its significance for CO2 sequestration. Chemical Engineering Journal, 2023, 451, 138633.	12.7	8	
----	---	------	---	--

#	Article	IF	CITATIONS
56	Recent Advances in Carbon Dioxide Adsorption, Activation and Hydrogenation to Methanol using Transition Metal Carbides. ChemSusChem, 2022, 15, .	6.8	8
57	The tandem reaction of propargylamine/propargyl alcohol with CO2: Reaction mechanism, catalyst activity and product diversity. Journal of CO2 Utilization, 2022, 65, 102192.	6.8	4
58	A possible contribution of carbon capture, geological utilization, and storage in the Chinese crude steel industry for carbon neutrality. Journal of Cleaner Production, 2022, 374, 133793.	9.3	14
59	China's pathways of CO ₂ capture, utilization and storage under carbon neutrality vision 2060. Carbon Management, 2022, 13, 435-449.	2.4	19
60	Electrochemical carbon capture processes for mitigation of CO ₂ emissions. Chemical Society Reviews, 2022, 51, 8676-8695.	38.1	38
61	Trade-offs between Sustainable Development Goals in carbon capture and utilisation. Energy and Environmental Science, 2023, 16, 113-124.	30.8	13
62	Thermo-, Electro-, and Photocatalytic CO ₂ Conversion to Value-Added Products over Porous Metal/Covalent Organic Frameworks. Accounts of Chemical Research, 2022, 55, 2978-2997.	15.6	89
63	Unraveling the effect of O2, NO2 and SO2 impurities on the stress corrosion behavior of X65 steel in water-saturated supercritical CO2 streams. Corrosion Science, 2022, 209, 110729.	6.6	12
64	Developing a robust thiadiazole derivative corrosion inhibitor for dynamic supercritical CO2 aqueous environment: Electrochemical tests and DFT calculations. Corrosion Science, 2022, 209, 110695.	6.6	18
65	A cost-effective and reliable pipelines layout of carbon capture and storage for achieving China's carbon neutrality target. Journal of Cleaner Production, 2022, 379, 134651.	9.3	10
66	Ball-Milled Processed, Selective Fe/ <i>h</i> -BN Nanocatalysts for CO ₂ Hydrogenation. ACS Applied Nano Materials, 2022, 5, 16475-16488.	5.0	6
67	Pipeline Network Options of CCUS in Coal Chemical Industry. Atmosphere, 2022, 13, 1864.	2.3	1
68	Modernizing cement manufacturing in China leads to substantial environmental gains. Communications Earth & Environment, 2022, 3, .	6.8	9
69	Main components of free organic carbon generated by obligate chemoautotrophic bacteria that inhibit their CO2 fixation. IScience, 2022, 25, 105553.	4.1	2
70	Notes for a History of Gas Geochemistry. Journal of Earth Science (Wuhan, China), 2022, 33, 1614-1623.	3.2	2
71	Optimization and assessment of carbon capture, transport and storage supply chains for industrial sectors: The cost of resilience. International Journal of Greenhouse Gas Control, 2022, 121, 103797.	4.6	12
72	Energetic, GHG, and economic analyses of electrified steam methane reforming using conventional reformer tubes. Energy Conversion and Management, 2023, 276, 116549.	9.2	8
73	A global energy system perspective on hydrogen Trade: A framework for the market color and the size analysis. Applied Energy, 2023, 330, 120267.	10.1	18

#	Article	IF	CITATIONS
74	Technology portfolios optimization to deliver cost-effective shale gas development: Using CO2 versus water. Fuel, 2023, 335, 127006.	6.4	2
75	Comparison and Clarification of China and US CCUS Technology Development. Atmosphere, 2022, 13, 2114.	2.3	1
77	Optimal deployment for carbon capture enables more than half of China's coal-fired power plant to achieve low-carbon transformation. IScience, 2022, 25, 105664.	4.1	4
78	Comparative techno-economic study of typically combustion-less hydrogen production alternatives. International Journal of Hydrogen Energy, 2023, 48, 7945-7958.	7.1	6
79	Deep-Learning-Based Flow Prediction for CO2 Storage in Shale–Sandstone Formations. Energies, 2023, 16, 246.	3.1	4
80	Role of biochar toward carbon neutrality. , 2023, 2, .		37
81	Advanced pre-combustion CO2 capture by clathrate hydrate formation with water-to-gas molar ratio optimization. Separation and Purification Technology, 2023, 310, 123135.	7.9	9
82	Subsurface carbon dioxide and hydrogen storage for a sustainable energy future. Nature Reviews Earth & Environment, 2023, 4, 102-118.	29.7	69
83	Feasibility trade-offs in decarbonising the power sector with high coal dependence: The case of Korea. Renewable and Sustainable Energy Transition, 2023, 3, 100050.	2.9	1
84	Amine-impregnated porous carbon–silica sheets derived from vermiculite with superior adsorption capability and cyclic stability for CO2 capture. Chemical Engineering Journal, 2023, 464, 142662.	12.7	11
85	Investigation of the enhanced oil recovery mechanism of CO2 synergistically with nanofluid in tight glutenite. Energy, 2023, 273, 127275.	8.8	4
86	The contribution of carbon capture and storage to Canada's net-zero plan. Journal of Cleaner Production, 2023, 404, 136901.	9.3	2
87	Economic costs and environmental benefits of deploying CCUS supply chains at scale: Insights from the source–sink matching LCA–MILP approach. Fuel, 2023, 344, 128047.	6.4	7
88	Chemical impacts of subsurface CO2 and brine on shallow groundwater quality. Chemosphere, 2023, 321, 138048.	8.2	2
89	Study on CO2 absorption by novel choline chloride-diethylenetriamine-water deep eutectic solvents in a rotor-stator reactor. Chemical Engineering and Processing: Process Intensification, 2023, 184, 109299.	3.6	2
90	Evaluation of CO ₂ enhanced oil recovery and CO ₂ storage potential in oil reservoirs of petroliferous sedimentary basin, China. , 2023, 78, 3.		6
91	Bioenergy with Carbon Capture and Storage (BECCS) in Brazil: A Review. Energies, 2023, 16, 2021.	3.1	5
92	Planetary cross-linked structure design of hybrid organosilica membrane by amine-driven polymerization for CO2 separation. Journal of Cleaner Production, 2023, 398, 136568.	9.3	3

#	Article	IF	CITATIONS
93	MULTIMOORA Method-Based Schweizer–Sklar Operations for CO2 Geological Storage Site Selection Under Pythagorean Fuzzy Environment. International Journal of Computational Intelligence Systems, 2023, 16, .	2.7	2
94	Retrospective insights into recent MXene-based catalysts for CO ₂ electro/photoreduction: how far have we gone?. Nanoscale, 2023, 15, 6536-6562.	5.6	16
95	China's multi-sector-shared CCUS networks in a carbon-neutral vision. IScience, 2023, 26, 106347.	4.1	12
96	A systemic review of hydrogen supply chain in energy transition. Frontiers in Energy, 2023, 17, 102-122.	2.3	15
97	Experimental Study on the Mechanism of Enhanced CO ₂ Hydrate Generation by Thermodynamic Promoters. ACS Sustainable Chemistry and Engineering, 2023, 11, 5367-5375.	6.7	3
98	A Highâ€Valent Ruâ^'PCP Pincer Catalyst for the Hydrogenation of Organic Carbonates. Israel Journal of Chemistry, 2023, 63, .	2.3	4
99	Prospective Life Cycle Assessment Bridging Biochemical, Thermochemical, and Electrochemical CO ₂ Reduction toward Sustainable Ethanol Synthesis. ACS Sustainable Chemistry and Engineering, 2023, 11, 5782-5799.	6.7	10
100	Assessment and Selection of Cyanobacterial Strains for CO ₂ Mineral Sequestration: Implications for Carbonation Mechanism. Geomicrobiology Journal, 2023, 40, 446-461.	2.0	0
101	Facile Fabrication of Monodispersed Carbon Sphere: A Pathway Toward Energyâ€Efficient Direct Air Capture (DAC) Using Amino Acids. Small, 2023, 19, .	10.0	3
102	Selecting Geological Formations for CO2 Storage: A Comparative Rating System. Sustainability, 2023, 15, 6599.	3.2	9
103	Synergetic roadmap of carbon neutrality and clean air for China. Environmental Science and Ecotechnology, 2023, 16, 100280.	13.5	12
104	The value of private properties for the conservation of biodiversity in the Brazilian Cerrado. Science, 2023, 380, 298-301.	12.6	12
105	Assessing the Effectiveness of the Use of the InVEST Annual Water Yield Model for the Rivers of Colombia: A Case Study of the Meta River Basin. Water (Switzerland), 2023, 15, 1617.	2.7	4
106	Net-zero emissions chemical industry in a world of limited resources. One Earth, 2023, 6, 682-704.	6.8	20
107	Can government subsidy and marine carbon capture, utilization and storage technology improve the decision level of supply chain intellectual property pledge financing?. Ocean and Coastal Management, 2023, 240, 106663.	4.4	2
108	Exploration of low-cost green transition opportunities for China's power system under dual carbon goals. Journal of Cleaner Production, 2023, 414, 137590.	9.3	5
109	Evaluation of hybrid amines and alcohol solvent with ion-exchange resin catalysts for energy-efficient CO ₂ capture. Green Chemistry, 2023, 25, 4647-4655.	9.0	0
110	Effective CO2 capture by in-situ nitrogen-doped nanoporous carbon derived from waste antibiotic fermentation residues. Environmental Pollution, 2023, 333, 121972.	7.5	4

#	Article	IF	Citations
111	Recent Advances and Future Perspectives in Carbon Capture, Transportation, Utilization, and Storage (CCTUS) Technologies: A Comprehensive Review. Fuel, 2023, 351, 128913.	6.4	39
112	Safety risk assessment of the large-scale carbon capture, utilization, and storage demonstration project in Dongying, China. Journal of Cleaner Production, 2023, 414, 137699.	9.3	4
113	Parametric simulations of hierarchical core–shell MOF materials for direct air capture. Separation and Purification Technology, 2023, 322, 124180.	7.9	0
114	Analysis of the effect of formation dip angle and injection pressure on the injectivity and migration of CO2 during storage. Energy, 2023, 280, 128021.	8.8	4
115	Will reshoring manufacturing of advanced electric vehicle battery support renewable energy transition and climate targets?. Science Advances, 2023, 9, .	10.3	5
116	Review on the challenges and strategies in oil and gas industry's transition towards carbon neutrality in China. Petroleum Science, 2023, 20, 3931-3944.	4.9	2
117	Solid adsorbents for carbon dioxide capture: a review. Chemistry and Ecology, 0, , 1-17.	1.6	0
118	Enhanced CO2 desorption rate for rich amine solution regeneration over hierarchical HZSM-5 catalyst. Chemical Engineering Journal, 2023, 469, 143871.	12.7	2
119	Nonacid Carbon Materials as Catalysts for Monoethanolamine Energy-Efficient Regeneration. Environmental Science & Technology, 2023, 57, 9975-9983.	10.0	1
120	Designing a CO ₂ Network for a Carbon-Neutral European Economy. , 2023, , .		0
121	Hybrid planktonic-biofilm cultivation of a Nordic mixed-species photosynthetic consortium: A pilot study on carbon capture and nutrient removal. Chemical Engineering Journal, 2023, 471, 144585.	12.7	4
122	Co-firing plants with retrofitted carbon capture and storage for power-sector emissions mitigation. Nature Climate Change, 2023, 13, 807-815.	18.8	14
123	Facile synthesis of Zncluster/NG nanozymes mimicking carbonic anhydrase for CO2 capture. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 676, 132201.	4.7	3
124	Global assessment of the carbon–water tradeoff of dry cooling for thermal power generation. , 2023, 1, 682-693.		0
125	Enhanced carbon capture with motif-rich amino acid loaded defective robust metal-organic frameworks. Nano Research, 2024, 17, 2004-2010.	10.4	2
126	A net-zero emissions strategy for China's power sector using carbon-capture utilization and storage. Nature Communications, 2023, 14, .	12.8	8
127	Photocoupled Electroreduction of CO ₂ over Photosensitizer-Decorated Covalent Organic Frameworks. Journal of the American Chemical Society, 2023, 145, 19856-19865.	13.7	7
128	Development patterns, material metabolism, and greenhouse gas emissions of high-speed railway in China. Communications Earth & Environment, 2023, 4, .	6.8	0

#	Article	IF	CITATIONS
129	Catalytic regeneration of amine-based absorbents for CO2 capture: The effect of acidic sites and accessibility. Separation and Purification Technology, 2023, 327, 124889.	7.9	2
130	Uncertainty of temperature rise under nationally determined contributions and carbon neutral policies. Advances in Climate Change Research, 2023, 14, 580-586.	5.1	1
131	The global impact and heterogeneity of China's climate policies. Energy and Climate Change, 2023, 4, 100116.	4.4	0
132	The global mismatch between equitable carbon dioxide removal liability and capacity. National Science Review, 0, , .	9.5	1
133	Study on effective phase interfacial area at different injection angles of hydro-jet cyclone. Chemical Engineering Science, 2023, , 119336.	3.8	0
135	Multi-objective optimisation of a carbon capture and sequestration supply chain under seismic risk constraints. A case study considering industrial emissions in Italy. International Journal of Greenhouse Gas Control, 2023, 129, 103993.	4.6	1
136	A continuous electrodialysis metathesis integrated with in-situ CO2 utilization for controllable NaHCO3/NH4Cl or Na2CO3/NH4Cl production from NaCl and NH3·H2O. Chemical Engineering Science, 2024, 283, 119381.	3.8	1
137	The role of underground salt caverns for large-scale energy storage: A review and prospects. Energy Storage Materials, 2023, 63, 103045.	18.0	6
138	Levelized Cost Analysis for Blast Furnace CO2 Capture, Utilization, and Storage Retrofit in China's Blast Furnace–Basic Oxygen Furnace Steel Plants. Energies, 2023, 16, 7817.	3.1	0
139	Design of ultrathin cross-linked poly(ethylene oxide) selective layer for high-performance CO2 capture. Chemical Engineering Journal, 2023, 478, 147530.	12.7	1
140	Amine-promoted gypsum carbonation for efficient CO2 capture and selective synthesis of CaCO3 polymorph integrating with amine regeneration by bipolar membrane electrodialysis. Chemical Engineering Journal, 2023, 478, 147335.	12.7	1
141	Gas and slurry flow behaviors in a CO ₂ â€mineralization spray tower reactor. AICHE Journal, 0, , .	3.6	0
143	Green connection to the world: Building regional responsible sustainable development strategies. Sustainable Development, 0, , .	12.5	0
144	Synergizing Aspen plus and life cycle assessment of nascent photocatalytic dry methane reforming over thermocatalytic and biomass gasification toward syngas generation. Journal of Cleaner Production, 2024, 436, 140270.	9.3	1
145	Diisobutylamine mediated CO2 mineralization and CaCO3 production from municipal solid waste incineration fly ash as raw ingredient and regeneration reagent. Chemical Engineering Journal, 2024, 481, 148392.	12.7	0
146	Visualization of CO2-oil vanishing interface to determine minimum miscibility pressure using microfluidics. Fuel, 2024, 362, 130876.	6.4	0
147	Environmental impacts of carbon capture, transport, and storage supply chains: Status and the way forward. International Journal of Greenhouse Gas Control, 2024, 132, 104039.	4.6	0
148	Achieving China's â€~double carbon goals', an analysis of the potential and cost of carbon capture in the resource-based area: Northwestern China. Energy, 2024, 292, 130441.	8.8	0

#	Article	IF	CITATIONS
149	Source-sink matching and cost analysis of offshore carbon capture, utilization, and storage in China. Energy, 2024, 291, 130137.	8.8	0
150	Co-assessment of costs and environmental impacts for off-grid direct air carbon capture and storage systems. , 2024, 3, .		0
151	Solid Oxide Fuel Cells Using Gas Hydrates for Power and Syngas Cogeneration: A Thermodynamic and Experimental Assessment. Energy & Fuels, 2024, 38, 2358-2367.	5.1	0
152	Estimating fossil CO2 emissions from COVID-19 post-pandemic recovery in G20: A machine learning approach. Journal of Cleaner Production, 2024, 442, 140875.	9.3	0
153	Assessment of China's flexible power investment value in the emission trading system. Applied Energy, 2024, 359, 122663.	10.1	0
154	Product Yield Increasing More Than 20 Times Achieved by Reducing Water Poisoning for Direct Diethyl Carbonate Synthesis. Langmuir, 2024, 40, 3125-3132.	3.5	0
155	The influence of pore size and pore structure of silica-based material on the amine-modified adsorbent for CO2 capture. Separation and Purification Technology, 2024, 340, 126735.	7.9	0
156	A protein transition can free up land to tap vast energy and negative emission potentials. One Earth, 2024, 7, 293-310.	6.8	1
157	Carbon Storage Potential of Shale Reservoirs Based on CO2 Fracturing Technology. Engineering, 2024, , .	6.7	0
158	Microbial contribution estimated by clumped isotopologues (13CH3D and 12CH2D2) characteristics in a CO2 enhanced coal bed methane reservoir. Science of the Total Environment, 2024, 922, 170926.	8.0	0
159	CO2 abatement feasibility for blast furnace CCUS retrofits in BF-BOF steel plants in China. Energy, 2024, 294, 130756.	8.8	0
160	Spatially resolved land and grid model of carbon neutrality in China. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121, .	7.1	0
161	Jet Loop Reactor-Intensified CO ₂ Utilization: An Efficient Strategy for the Synthesis of Ethylene Carbonate. Industrial & Engineering Chemistry Research, 2024, 63, 4257-4264.	3.7	0
162	Does international trade reduce global carbon inequality? Evidence from a producer-consumer shared responsibility. Journal of Environmental Management, 2024, 355, 120307.	7.8	0
163	A multi-timescale optimization method for integrated energy systems with carbon capture and accounting. Journal of Computational Methods in Sciences and Engineering, 2024, 24, 69-86.	0.2	0
164	The carbon-energy-water nexus of the carbon capture, utilization, and storage technology deployment schemes: A case study in China's cement industry. Applied Energy, 2024, 362, 122991.	10.1	0
165	Optimal coal power phase-out pathway considering high renewable energy proportion: A provincial example. Energy Policy, 2024, 188, 114071.	8.8	0
166	The evolutionary analysis of investment in CCS-EOR under dual carbon target—From the perspective of multi-agent involvement. International Journal of Greenhouse Gas Control, 2024, , 104107.	4.6	0

#	Article	IF	CITATIONS
167	Optimal Design of Resilient Carbon Capture, Utilization and Storage (CCUS) Supply Chain Networks under Facility Disruption. Sustainability, 2024, 16, 2621.	3.2	0
168	Investigating the relationship between macroeconomic indicators, renewables and pollution across diverse regions in the globalization era. Applied Energy, 2024, 363, 123077.	10.1	0
169	Carbon mineralization of steel and iron-making slag: Paving the way for a sustainable and carbon-neutral future. Journal of Environmental Chemical Engineering, 2024, 12, 112448.	6.7	0