Perception of a divergent family of phytocytokines by t

Nature Communications 12, 705

DOI: 10.1038/s41467-021-20932-y

Citation Report

#	Article	IF	CITATIONS
1	Maintenance of Cell Wall Integrity under High Salinity. International Journal of Molecular Sciences, 2021, 22, 3260.	1.8	48
2	Coding of plant immune signals by surface receptors. Current Opinion in Plant Biology, 2021, 62, 102044.	3.5	20
3	Damage-Associated Molecular Patterns (DAMPs) in Plant Innate Immunity: Applying the Danger Model and Evolutionary Perspectives. Annual Review of Phytopathology, 2021, 59, 53-75.	3.5	79
4	The Arabidopsis MIK2 receptor elicits immunity by sensing a conserved signature from phytocytokines and microbes. Nature Communications, 2021, 12, 5494.	5.8	54
5	Plant immune networks. Trends in Plant Science, 2022, 27, 255-273.	4.3	140
6	Phytocytokines function as immunological modulators of plant immunity. Stress Biology, 2021, 1, 8.	1.5	37
7	Pathogen- and plant-derived peptides trigger plant immunity. Peptides, 2021, 144, 170611.	1.2	6
8	The Wheat Wall-Associated Receptor-Like Kinase TaWAK-6D Mediates Broad Resistance to Two Fungal Pathogens Fusarium pseudograminearum and Rhizoctonia cerealis. Frontiers in Plant Science, 2021, 12, 758196.	1.7	10
9	Emerging roles of pathogen-secreted host mimics in plant disease development. Trends in Parasitology, 2021, 37, 1082-1095.	1.5	8
11	Fighting salt or enemies: shared perception and signaling strategies. Current Opinion in Plant Biology, 2021, 64, 102120.	3.5	9
12	The Phloem Intercalated With Xylem-Correlated 3 Receptor-Like Kinase Constitutively Interacts With Brassinosteroid Insensitive 1-Associated Receptor Kinase 1 and Is Involved in Vascular Development in Arabidopsis. Frontiers in Plant Science, 2021, 12, 706633.	1.7	6
13	Molecular tug-of-war: Plant immune recognition of herbivory. Plant Cell, 2022, 34, 1497-1513.	3.1	48
14	Thirty years of resistance: Zig-zag through the plant immune system. Plant Cell, 2022, 34, 1447-1478.	3.1	318
15	A Glimpse of Programmed Cell Death Among Bacteria, Animals, and Plants. Frontiers in Cell and Developmental Biology, 2021, 9, 790117.	1.8	3
16	Plant elicitor peptide 1 fortifies root cell walls and triggers a systemic root-to-shoot immune signaling in <i>Arabidopsis</i> . Plant Signaling and Behavior, 2022, 17, 2034270.	1,2	7
17	The MIK2/SCOOP Signaling System Contributes to Arabidopsis Resistance Against Herbivory by Modulating Jasmonate and Indole Glucosinolate Biosynthesis. Frontiers in Plant Science, 2022, 13, 852808.	1.7	11
18	Stigmatic Transcriptome Analysis of Self-Incompatible and Compatible Pollination in Corylus heterophylla Fisch. × Corylus avellana L Frontiers in Plant Science, 2022, 13, 800768.	1.7	8
19	Defense response changes in roots of oil palm (Elaeis guineensis Jacq.) seedlings after internal symptoms of Ganoderma boninense Pat. infection. BMC Plant Biology, 2022, 22, 139.	1.6	5

#	Article	IF	Citations
20	RGIâ€GOLVEN signaling promotes cell surface immune receptor abundance to regulate plant immunity. EMBO Reports, 2022, 23, e53281.	2.0	20
21	Knowing me, knowing you: Self and non-self recognition in plant immunity. Essays in Biochemistry, 2022, 66, 447-458.	2.1	12
22	EWR1 as a SCOOP peptide activates MIK2-dependent immunity in <i>Arabidopsis</i> Interactions, 2022, 17, 562-568.	1.0	7
23	Phytocytokine signalling reopens stomata in plant immunity and water loss. Nature, 2022, 605, 332-339.	13.7	64
24	Genome-based high-resolution mapping of fusarium wilt resistance in sweet basil. Plant Science, 2022, 321, 111316.	1.7	7
25	Regulation of pattern-triggered immunity and growth by phytocytokines. Current Opinion in Plant Biology, 2022, 68, 102230.	3.5	30
26	Perception of a conserved family of plant signalling peptides by the receptor kinase HSL3. ELife, 0, 11 , .	2.8	20
27	The peptide SCOOP12 acts on reactive oxygen species homeostasis to modulate cell division and elongation in Arabidopsis primary root. Journal of Experimental Botany, 2022, 73, 6115-6132.	2.4	12
28	THESEUS1 activation by stress: isomerization and peptide perception?. Trends in Plant Science, 2022, , .	4.3	0
29	The <i>Arabidopsis thaliana</i> – <i>Fusarium oxysporum</i> strain 5176 pathosystem: an overview. Journal of Experimental Botany, 2022, 73, 6052-6067.	2.4	3
30	Concerted actions of PRR- and NLR-mediated immunity. Essays in Biochemistry, 2022, 66, 501-511.	2.1	16
31	Plant signaling: Peptide–receptor pair re-opens stomata after pathogen infection. Current Biology, 2022, 32, R783-R786.	1.8	3
32	Fungal endophytes of Brassicaceae: Molecular interactions and crop benefits. Frontiers in Plant Science, $0,13,.$	1.7	14
33	Mechanisms of plant cell wall surveillance in response to pathogens, cell wall-derived ligands and the effect of expansins to infection resistance or susceptibility. Frontiers in Plant Science, $0,13,.$	1.7	9
35	Root osmotic sensing from local perception to systemic responses. Stress Biology, 2022, 2, .	1.5	8
36	Revisiting the Critical Role of ROS and RNS in Plant Defense. Journal of Plant Growth Regulation, 2023, 42, 6202-6227.	2.8	6
37	Mapping of QTLs and candidate genes associated with multiple phenotypic traits for Huanglongbing tolerance in citrus. Horticultural Plant Journal, 2023, 9, 705-719.	2.3	4
38	The secreted immune response peptide 1 functions as a phytocytokine in rice immunity. Journal of Experimental Botany, 2023, 74, 1059-1073.	2.4	2

#	Article	IF	CITATIONS
39	Role of receptor-like kinases in plant-pathogen interaction. , 2023, , 121-147.		0
40	Genome-Wide Identification and Analysis of the TaSERK Gene Family in Bread Wheat Triticum aestivum L. and TaSERK8 Overexpression Study in Rice. Journal of Plant Growth Regulation, 0, , .	2.8	0
42	The PROSCOOP10 Gene Encodes Two Extracellular Hydroxylated Peptides and Impacts Flowering Time in Arabidopsis. Plants, 2022, 11, 3554.	1.6	4
43	The somatic embryogenesis receptor kinase TaSERK1 participates in the immune response to Rhizoctonia cerealis infection by interacting and phosphorylating the receptor-like cytoplasmic kinase TaRLCK1B in wheat. International Journal of Biological Macromolecules, 2023, 228, 604-614.	3.6	1
45	Genome-wide genetic variation and comparative transcriptome analyses of citrus mutant Jedae-unshiu and wild-type Citrus unshiu. Plant Biotechnology Reports, 0, , .	0.9	0
46	Small Signals Lead to Big Changes: The Potential of Peptide-Induced Resistance in Plants. Journal of Fungi (Basel, Switzerland), 2023, 9, 265.	1.5	4
47	Peptide signaling through leucineâ€rich repeat receptor kinases: insight into land plant evolution. New Phytologist, 2023, 238, 977-982.	3.5	6
64	A Seedling Growth Inhibition Assay to Measure Phytocytokine Activity. Methods in Molecular Biology, 2024, , 105-113.	0.4	0
65	Detection of Ligand-Induced Receptor Kinase and Signaling Component Phosphorylation with Mn2+-Phos-Tag SDS-PAGE. Methods in Molecular Biology, 2024, , 205-214.	0.4	0