Intelligence-assisted predesign for the sustainable recy beyond

Energy and Environmental Science 14, 5801-5815 DOI: 10.1039/d1ee01812d

Citation Report

#	Article	IF	CITATIONS
1	Sustainable Recycling of Electrode Materials in Spent Li-Ion Batteries through Direct Regeneration Processes. ACS ES&T Engineering, 2022, 2, 586-605.	7.6	37
2	Dry electrode technology, the rising star in solid-state battery industrialization. Matter, 2022, 5, 876-898.	10.0	108
3	A critical review on tackling complex rare earth supply security problem. Resources Policy, 2022, 77, 102697.	9.6	8
4	Toward practical lithium-ion battery recycling: adding value, tackling circularity and recycling-oriented design. Energy and Environmental Science, 2022, 15, 2732-2752.	30.8	110
5	Surface Growth and Intergranular Separation of Polycrystalline Particles for Regeneration of Stable Single-Crystal Cathode Materials. ACS Applied Materials & Interfaces, 2022, 14, 29886-29895.	8.0	17
6	Progress, Key Issues, and Future Prospects for Liâ€lon Battery Recycling. Global Challenges, 2022, 6, .	3.6	56
7	A critical review of the circular economy for lithium-ion batteries and photovoltaic modules – status, challenges, and opportunities. Journal of the Air and Waste Management Association, 2022, 72, 478-539.	1.9	16
8	Prospects for managing endâ€ofâ€life lithiumâ€ion batteries: Present and future. , 2022, 1, 417-433.		66
9	Advances in Intelligent Regeneration of Cathode Materials for Sustainable Lithiumâ€ion Batteries. Advanced Energy Materials, 2022, 12, .	19.5	34
10	Power management strategy for unidirectional current pulsed triboelectric nanogenerator. Nanotechnology, 2022, 33, 465401.	2.6	3
11	Start from the source: direct treatment of a degraded LiFePO ₄ cathode for efficient recycling of spent lithium-ion batteries. Green Chemistry, 2022, 24, 7448-7457.	9.0	18
12	Direct recovery: A sustainable recycling technology for spent lithium-ion battery. Energy Storage Materials, 2023, 54, 120-134.	18.0	82
13	Fast Clustering of Retired Lithium-Ion Batteries for Secondary Life with a Two-Step Learning Method. ACS Energy Letters, 2022, 7, 3817-3825.	17.4	13
14	Adaptable Eutectic Salt for the Direct Recycling of Highly Degraded Layer Cathodes. Journal of the American Chemical Society, 2022, 144, 20306-20314.	13.7	76
15	How to Promote the Industrial Application of SiO <i>_x</i> Anode Prelithiation: Capability, Accuracy, Stability, Uniformity, Cost, and Safety. Advanced Energy Materials, 2022, 12, .	19.5	22
16	Comprehensive recycling of lithium-ion batteries: Fundamentals, pretreatment, and perspectives. Energy Storage Materials, 2023, 54, 172-220.	18.0	50
17	Reevaluating Flexible Lithium-Ion Batteries from the Insights of Mechanics and Electrochemistry. Electrochemical Energy Reviews, 2022, 5, .	25.5	11
18	Recent Progress in Highâ€voltage Aqueous Zincâ€based Hybrid Redox Flow Batteries. Chemistry - an Asian Journal, 2023, 18, .	3.3	1

CITATION REPORT

#	ARTICLE	IF	CITATIONS
19	A Future Perspective on Waste Management of Lithium-Ion Batteries for Electric Vehicles in Lao PDR: Current Status and Challenges. International Journal of Environmental Research and Public Health, 2022, 19, 16169.	2.6	4
20	Roadmap for a sustainable circular economy in lithium-ion and future battery technologies. JPhys Energy, 2023, 5, 021501.	5.3	16
21	Health prognostics for lithium-ion batteries: mechanisms, methods, and prospects. Energy and Environmental Science, 2023, 16, 338-371.	30.8	66
22	Design of Phosphide Anodes Harvesting Superior Sodium Storage: Progress, Challenges, and Perspectives. Advanced Functional Materials, 2023, 33, .	14.9	30
23	Leveraging blockchain technology for resilient and robust frequency control in a renewable-based hybrid power system with hydrogen and battery storage integration. Energy Conversion and Management, 2023, 283, 116888.	9.2	5
24	Heterointerface construction of carbon coated cobalt-iron phosphide space-confined in hollow porous carbon balls to promote internal/external sodium storage kinetics. Journal of Electroanalytical Chemistry, 2023, 932, 117219.	3.8	1
25	Rapidly Constructing Sodium Fluorideâ€Rich Interface by Pressure and Diglymeâ€Induced Defluorination Reaction for Stable Sodium Metal Anode. Small, 2023, 19, .	10.0	10
26	Complementary combination of lithium protection strategies for robust and longevous lithium metal batteries. Energy Storage Materials, 2023, 57, 229-248.	18.0	16
27	Sustainable Regeneration of Spent Graphite as a Cathode Material for a High-Performance Dual-Ion Battery. ACS Sustainable Chemistry and Engineering, 2023, 11, 4308-4316.	6.7	10
28	Hierarchical mesoporous NiO nanosheet arrays as integrated electrode for hybrid sodium-air batteries. Ceramics International, 2023, 49, 21355-21362.	4.8	0
29	Powering battery sustainability: a review of the recent progress and evolving challenges in recycling lithium-ion batteries. , 0, 2, .		3
30	Toward Sustainable All Solidâ€State Li–Metal Batteries: Perspectives on Battery Technology and Recycling Processes. Advanced Materials, 2023, 35, .	21.0	14
31	Advanced Anode Materials Based on Iron Oxides for Lithium-Ion Batteries. Nano, 2023, 18, .	1.0	1
32	Direct Conversion of Waste Battery Cathodes to Highâ€Volumetricâ€Capacity Anodes with Assembled Secondaryâ€Particle Morphology. Advanced Energy Materials, 2023, 13, .	19.5	9
33	Data-driven-aided strategies in battery lifecycle management: Prediction, monitoring, and optimization. Energy Storage Materials, 2023, 59, 102785.	18.0	4
34	Designing lithium-ion batteries for recycle: The role of adhesives. , 2023, 1, 100023.		4
35	Engineering Multi-field-coupled Synergistic Ion Transport System Based on the Heterogeneous Nanofluidic Membrane for High-Efficient Lithium Extraction. Nano-Micro Letters, 2023, 15, .	27.0	1
36	Recycling Spent Lithium-Ion Batteries Using Waste Benzene-Containing Plastics: Synergetic Thermal Reduction and Benzene Decomposition. Environmental Science & Technology, 2023, 57, 7599-7611.	10.0	10

CITATION REPORT

#	Article	IF	CITATIONS
37	Cathode regeneration and upcycling of spent LIBs: toward sustainability. Energy and Environmental Science, 2023, 16, 2856-2868.	30.8	14
38	Technological penetration and carbon-neutral evaluation of rechargeable battery systems for large-scale energy storage. Journal of Energy Storage, 2023, 69, 107917.	8.1	3
39	Considerable molecular interactions enable robust electrochemical properties: hydrogen bonds in lithium-ion batteries. Science China Chemistry, 2023, 66, 1905-1923.	8.2	1
40	Electrochemical Restoration of Battery Materials Guided by Synchrotron Radiation Technology for Sustainable Lithiumâ€lon Batteries. Small Methods, 2023, 7, .	8.6	4
41	Review on the Binders for Sustainable Highâ€Energyâ€Density Lithium Ion Batteries: Status, Solutions, and Prospects. Advanced Functional Materials, 2023, 33, .	14.9	14
42	A closed-loop supply chain operation decision under life cycle: Ecological design, service design and recycling effort perspectives. RAIRO - Operations Research, 2024, 58, 341-371.	1.8	0
43	3D Printingâ€Enabled Design and Manufacturing Strategies for Batteries: A Review. Small, 2023, 19, .	10.0	6
44	Direct recycling of spent Li-ion batteries: Challenges and opportunities toward practical applications. IScience, 2023, 26, 107676.	4.1	6
45	Scalable Construction of Multifunctional Protection Layer with Lowâ€Cost Water Glass for Robust and Highâ€Performance Zinc Anode. Advanced Functional Materials, 2024, 34, .	14.9	2
46	Recent developments of nanocomposite ionogels as monolithic electrolyte membranes for lithiumâ€based batteries. , 0, , .		0
47	Direct recovery of degraded LiFePO4 cathode via mild chemical relithiation strategy. Chemical Engineering Journal, 2023, 477, 147201.	12.7	1
48	Advances and perspectives towards spent LiFePO4 battery recycling. Journal of Cleaner Production, 2024, 434, 140077.	9.3	2
49	Collaborative and privacy-preserving retired battery sorting for profitable direct recycling via federated machine learning. Nature Communications, 2023, 14, .	12.8	4
50	Dual-Channel-Ion Conductor Membrane for Low-Energy Lithium Extraction. Environmental Science & Technology, 2023, 57, 17246-17255.	10.0	3
51	Mechanics and electrochemistry in nature-inspired functional batteries: fundamentals, configurations and devices. Energy and Environmental Science, 2024, 17, 974-1006.	30.8	0
52	Examining green-sustainable approaches for recycling of lithium-ion batteries. , 2024, 3, 100034.		0
53	Conductive composite binder for recyclable LiFePO4 cathode. Chinese Chemical Letters, 2023, , 109389.	9.0	2
54	Dendriteâ€Free Lithium Metal Batteries Enabled by Coordination Chemistry in Polymerâ€Ceramic Modified Separators. Advanced Functional Materials, 2024, 34, .	14.9	0

#	Article	IF	Citations	
55	Engineering Dry Electrode Manufacturing for Sustainable Lithium-Ion Batteries. Batteries, 2024, 10, 39.	4.5	0	
56	Recent advances in all-solid-state batteries for commercialization. Materials Chemistry Frontiers, 2024, 8, 1861-1887.	5.9	0	
57	Fe(III)/Fe(II) Redox-Based Lithium Extraction/Recovery from Liquid- and Solid-Phase Lithium Resources. ACS Energy Letters, 2024, 9, 758-767.	17.4	0	
58	Rapid and sustainable battery health diagnosis for recycling pretreatment using fast pulse test and random forest machine learning. Journal of Power Sources, 2024, 597, 234156.	7.8	Ο	
59	Direct lithium extraction from spent batteries for efficient lithium recycling. Science Bulletin, 2024, ,	9.0	0	

CITATION REPORT