Multitargeting approaches involving carbonic anhydras variety of disorders

Journal of Enzyme Inhibition and Medicinal Chemistry 36, 1702-1714 DOI: 10.1080/14756366.2021.1945049

Citation Report

#	Article	IF	CITATIONS
1	Discovery of 2,4-thiazolidinedione-tethered coumarins as novel selective inhibitors for carbonic anhydrase IX and XII isoforms. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 531-541.	5.2	15
2	Coumarins inhibit Îclass carbonic anhydrase from <i>Plasmodium falciparum</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 680-685.	5.2	8
3	Carbonic anhydrase inhibitors: an update on experimental agents for the treatment and imaging of hypoxic tumors. Expert Opinion on Investigational Drugs, 2021, 30, 1197-1208.	4.1	61
4	2-Aminobenzoxazole-appended coumarins as potent and selective inhibitors of tumour-associated carbonic anhydrases. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 168-177.	5.2	11
5	Isocoumarins: a new class of selective carbonic anhydrase IX and XII inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 743-748.	5.2	13
6	A Series of Thiadiazolylâ€Benzenesulfonamides Incorporating an Aromatic Tail as Isoformâ€5elective, Potent Carbonic Anhydrase II/XII Inhibitors. ChemMedChem, 2022, , e202200056.	3.2	4
7	1,5â€Benzodiazepines as a platform for the design of carbonic anhydrase inhibitors. Archiv Der Pharmazie, 2022, 355, 2100405.	4.1	3
8	Targeting carbonic anhydrase IX and XII isoforms with small molecule inhibitors and monoclonal antibodies. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 1278-1298.	5.2	36
9	Synthesis and biological evaluation of sulfonamideâ€based compounds as inhibitors of carbonic anhydrase from <i>Vibrio cholerae</i> . Archiv Der Pharmazie, 2022, 355, .	4.1	3
10	Sulfonamide-Derived Dithiocarbamate Gold(I) Complexes Induce the Apoptosis of Colon Cancer Cells by the Activation of Caspase 3 and Redox Imbalance. Biomedicines, 2022, 10, 1437.	3.2	2
11	Squaramide-Tethered Sulfonamides and Coumarins: Synthesis, Inhibition of Tumor-Associated CAs IX and XII and Docking Simulations. International Journal of Molecular Sciences, 2022, 23, 7685.	4.1	9
12	Novel Insights on Human Carbonic Anhydrase Inhibitors Based on Coumalic Acid: Design, Synthesis, Molecular Modeling Investigation, and Biological Studies. International Journal of Molecular Sciences, 2022, 23, 7950.	4.1	10
13	Discovery of novel drugs for Chagas disease: is carbonic anhydrase a target for antiprotozoal drugs?. Expert Opinion on Drug Discovery, 2022, 17, 1147-1158.	5.0	2
14	Epileptic Targets and Drugs: A Mini-Review. Current Drug Targets, 2023, 24, 212-224.	2.1	1
15	Dependence on linkers' flexibility designed for benzenesulfonamides targeting discovery of novel hCA IX inhibitors as potent anticancer agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 2765-2785.	5.2	9
16	Structureâ€guided identification of a selective sulfonamideâ€based inhibitor targeting the human carbonic anhydrase VA isoform. Archiv Der Pharmazie, 2023, 356, .	4.1	2
17	Design, synthesis, biological evaluation and crystal structure determination of dual modulators of carbonic anhydrases and estrogen receptors. European Journal of Medicinal Chemistry, 2023, 246, 115011.	5.5	3
18	Investigation of novel alkyl/benzyl (4-sulphamoylphenyl)carbamimidothioates as carbonic anhydrase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2023, 38, .	5.2	6

#	Article	IF	CITATIONS
19	Sulphonamide inhibition studies of the β-carbonic anhydrase GsaCAβ present in the salmon platyhelminth parasite <i>Gyrodactylus salaris</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2023, 38, .	5.2	2
20	Click chemistry approaches for developing carbonic anhydrase inhibitors and their applications. Journal of Enzyme Inhibition and Medicinal Chemistry, 2023, 38, .	5.2	13
21	Small Structural Differences Govern the Carbonic Anhydrase II Inhibition Activity of Cytotoxic Triterpene Acetazolamide Conjugates. Molecules, 2023, 28, 1009.	3.8	5
22	Novel Insights on CAI–CORM Hybrids: Evaluation of the CO Releasing Properties and Pain-Relieving Activity of Differently Substituted Coumarins for the Treatment of Rheumatoid Arthritis. Journal of Medicinal Chemistry, 2023, 66, 1892-1908.	6.4	5
23	4-(5-Amino-pyrazol-1-yl)benzenesulfonamide derivatives as novel multi-target anti-inflammatory agents endowed with inhibitory activity against COX-2, 5-LOX and carbonic anhydrase: Design, synthesis, and biological assessments. European Journal of Medicinal Chemistry, 2023, 250, 115180.	5.5	13
24	Coumarin and Piperazine Conjugates as Selective Inhibitors of the Tumor-associated Carbonic Anhydrase IX and XII Isoforms. Anti-Cancer Agents in Medicinal Chemistry, 2023, 23, 1184-1191.	1.7	3
25	Diversely <i>N</i> -substituted benzenesulfonamides dissimilarly bind to human carbonic anhydrases: crystallographic investigations of <i>N</i> -nitrosulfonamides. Journal of Enzyme Inhibition and Medicinal Chemistry, 2023, 38, .	5.2	1
26	Identification of new 4-(6-oxopyridazin-1-yl)benzenesulfonamides as multi-target anti-inflammatory agents targeting carbonic anhydrase, COX-2 and 5-LOX enzymes: synthesis, biological evaluations and modelling insights. Journal of Enzyme Inhibition and Medicinal Chemistry, 2023, 38, .	5.2	3
27	Escinosome thermosensitive gel optimizes efficacy of CAI-CORM in a rat model of rheumatoid arthritis. Journal of Controlled Release, 2023, 358, 171-189.	9.9	1
28	Targeting carbonic anhydrases for the management of hypoxic metastatic tumors. Expert Opinion on Therapeutic Patents, 2023, 33, 701-720.	5.0	4
29	Erlotinib-containing benzenesulfonamides as anti- <i>Helicobacter pylori</i> agents through carbonic anhydrase inhibition. Future Medicinal Chemistry, 2023, 15, 1865-1883.	2.3	2
30	Lupane acetates in small molecule drug hybrids: Probing their inhibitory activity for carbonic anhydrase II. European Journal of Medicinal Chemistry Reports, 2024, 10, 100139.	1.4	0
31	Dual Inhibitors of Brain Carbonic Anhydrases and Monoamine Oxidase-B Efficiently Protect against Amyloid-β-Induced Neuronal Toxicity, Oxidative Stress, and Mitochondrial Dysfunction. Journal of Medicinal Chemistry, 2024, 67, 4170-4193.	6.4	0
32	Explainable artificial intelligence in the design of selective carbonic anhydrase <scp>lâ€I</scp> inhibitors via molecular fingerprinting. Journal of Computational Chemistry, 0, , .	3.3	0

CITATION REPORT