Confinement-guided photophysics in MOFs, COFs, and

Chemical Society Reviews 50, 4382-4410 DOI: 10.1039/d0cs01519a

Citation Report

#	Article	IF	CITATIONS
1	Beyond structural motifs: the frontier of actinide-containing metal–organic frameworks. Chemical Science, 2021, 12, 7214-7230.	3.7	43
2	Recent Progress in Luminous Particleâ€Encapsulated Host–Guest Metalâ€Organic Frameworks for Optical Applications. Advanced Optical Materials, 2021, 9, 2100283.	3.6	39
3	Molecular Dye-Sensitized Photocatalysis with Metal-Organic Framework and Metal Oxide Colloids for Fuel Production. Energies, 2021, 14, 4260.	1.6	11
4	Photophysics of azobenzene constrained in a UiO metalâ€organic framework: effects of pressure, solvation and dynamic disorder. Chemistry - A European Journal, 2021, 27, 14871-14875.	1.7	6
5	The effect of cavity size on ruthenium (II) tris-(2,2-bipyridine) photophysics encapsulated within zirconium based metal organic frameworks. Inorganica Chimica Acta, 2021, 526, 120537.	1.2	2
6	A cationic thorium–organic framework with triple single-crystal-to-single-crystal transformation peculiarities for ultrasensitive anion recognition. Chemical Science, 2021, 12, 15833-15842.	3.7	20
7	Encapsulation of Dyes in Luminescent Metal-Organic Frameworks for White Light Emitting Diodes. Nanomaterials, 2021, 11, 2761.	1.9	25
8	The Synthesis and Properties of TIPA-Dominated Porous Metal-Organic Frameworks. Nanomaterials, 2021, 11, 2791.	1.9	3
9	Unveiling the Unique Roles of Metal Coordination and Modulator in the Polymorphism Control of Metalâ€Organic Frameworks. Chemistry - A European Journal, 2021, 27, 17586-17594.	1.7	13
10	Chemically Stable Carbazole-Based Imine Covalent Organic Frameworks with Acidochromic Response for Humidity Control Applications. Journal of the American Chemical Society, 2021, 143, 18368-18373.	6.6	40
11	In situ activation of Br-confined Ni-based metal-organic framework hollow prisms toward efficient electrochemical oxygen evolution. Science Advances, 2021, 7, eabk0919.	4.7	87
12	Dual functional sp ² carbon-conjugated covalent organic frameworks for fluorescence sensing and effective removal and recovery of Pd ²⁺ ions. Journal of Materials Chemistry A, 2021, 9, 26861-26866.	5.2	29
13	Amidinium sulfonate hydrogen-bonded organic framework with fluorescence amplification function for sensitive aniline detection. Chinese Chemical Letters, 2022, 33, 4317-4320.	4.8	18
14	Design and Multiple Applications of Mixed-Ligand Metal–Organic Frameworks with Dual Emission. Analytical Chemistry, 2022, 94, 4938-4947.	3.2	43
15	TWO Zn(II)/Cu(II) COMPLEXES BASED ON FLEXIBLE MIXED LIGANDS: SYNTHESES, STRUCTURAL CHARACTERIZATION, AND LUMINESCENCE SENSING OF NITROBENZENE. Journal of Structural Chemistry, 2021, 62, 1955-1961.	0.3	0
16	Hydrogenâ€Bonded Organic Frameworks: Functionalized Construction Strategy by Nitrogen ontaining Functional Group. Chemistry - A European Journal, 2022, 28, .	1.7	20
17	MOFs for solar photochemistry applications. , 2022, , 665-698.		1
18	A metastable-state photoacid-based metal organic framework with multi-stimuli-responsive chromism. Dyes and Pigments, 2022, 203, 110365.	2.0	7

#	Article	IF	CITATIONS
19	Encapsulation of AlEgens within Metal–Organic Framework toward Highâ€Performance White Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, .	3.6	9
20	Tracking the Oxygen Dynamics of Solid–Liquid Electrochemical Interfaces by Correlative In Situ Synchrotron Spectroscopies. Accounts of Chemical Research, 2022, 55, 1949-1959.	7.6	29
21	Excited state intramolecular proton transfer of 2-Aryl,3-Hydroxybenzo[g]quinolones in surfactant supramolecular assemblies. Journal of Luminescence, 2022, , 119127.	1.5	0
22	Synergetic Pt Atoms and Nanoparticles Anchored in Standing Carbonâ€Derived from Covalent Organic Frameworks for Catalyzing ORR. Advanced Materials Interfaces, 0, , 2201263.	1.9	4
23	Photocatalytic molecular containers enable unique reactivity modes in confinement. Tetrahedron Letters, 2022, 105, 154052.	0.7	0
24	Progress in Hybridization of Covalent Organic Frameworks and Metal–Organic Frameworks. Small, 2022, 18, .	5.2	41
25	Bespoke crystalline hybrids towards the next generation of white LEDs. Nature Reviews Materials, 2022, 7, 677-678.	23.3	24
26	A MOF-based luminometric sensor for ultra-sensitive and highly selective detection of chromium oxyanions. Talanta, 2023, 252, 123894.	2.9	7
27	Dual functionality of novel Porous-Osmium(IV)-MOFs. Journal of Molecular Structure, 2023, 1271, 134150.	1.8	0
28	Recent progress on MOF-based optical sensors for VOC sensing. Chemical Science, 2022, 13, 13978-14007.	3.7	49
29	Photophysical comparison of Zn(<scp>ii</scp>) phthalocyanaine tetrasulfonate and Zn(<scp>ii</scp>) tetrakis(4-sulfonatophenyl)porphyrin encapsulated within the Zn-polyhedral metal organic framework, HKUST-1(Zn). Dalton Transactions, 2022, 51, 12729-12735.	1.6	0
30	Phase transition of metal–organic frameworks for regulating the fluorescence properties of dyes. New Journal of Chemistry, 2022, 46, 20056-20060.	1.4	1
31	Photoinduced host-to-guest electron transfer in a self-assembled coordination cage. Organic Chemistry Frontiers, 2022, 9, 5485-5493.	2.3	3
32	Designing coordination polymers as multi-drug-self-delivery systems for tuberculosis and cancer therapy: <i>in vitro</i> viability and <i>in vivo</i> toxicity assessment. Biomaterials Science, 2022, 10, 6201-6216.	2.6	2
33	Topology- and wavelength-governed CO ₂ reduction photocatalysis in molecular catalyst-metal–organic framework assemblies. Chemical Science, 2022, 13, 12164-12174.	3.7	13
34	Luminescent MOFs (LMOFs): recent advancement towards a greener WLED technology. Chemical Communications, 2022, 58, 10768-10788.	2.2	20
35	Dramatic emission enhancement of aggregation-induced emission luminogens by dynamic metal coordination bonds and the anti-heavy-atom effect. Chemical Communications, 2022, 58, 10837-10840.	2.2	5
36	Confinement Engineering of Electrocatalyst Surfaces and Interfaces. Advanced Functional Materials, 2022, 32, .	7.8	43

#	Article	IF	CITATIONS
37	Engineering Covalent Organic Frameworks as Heterogeneous Photocatalysts for Organic Transformations. Angewandte Chemie - International Edition, 2022, 61, .	7.2	55
38	Engineering Covalent Organic Frameworks as Heterogeneous Photocatalysts for Organic Transformations. Angewandte Chemie, 2022, 134, .	1.6	2
39	Light-Responsive Solid–Solid Phase Change Materials for Photon and Thermal Energy Storage. ACS Materials Au, 2023, 3, 37-42.	2.6	11
40	Photoresponsive Supramolecular Polymers: From Lightâ€Controlled Small Molecules to Smart Materials. Advanced Materials, 2023, 35, .	11.1	51
41	Construction of Atomic Metalâ€N ₂ Sites by Interlayers of Covalent Organic Frameworks for Electrochemical H ₂ O ₂ Synthesis. Small, 2022, 18, .	5.2	17
42	Oxygen vacancy–rich Cu2O@Cu with a hydrophobic microenvironment for highly selective C C coupling to generate C2H4. Chemical Engineering Journal, 2023, 454, 140321.	6.6	11
43	Confinementâ€Driven Photophysics in Hydrazoneâ€Based Hierarchical Materials. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
44	Energy Transport in Dichromic Metalloâ€organic Crystals Selective Inclusion of Spatially Resolved Arrays of Donor and Acceptor Dyes in Different Nanochannels. Angewandte Chemie, 0, , .	1.6	0
45	Energy Transport in Dichroic Metalloâ€organic Crystals: Selective Inclusion of Spatially Resolved Arrays of Donor and Acceptor Dyes in Different Nanochannels**. Angewandte Chemie - International Edition, 2023, 62, .	7.2	6
46	Confinementâ€Driven Photophysics in Hydrazoneâ€Based Hierarchical Materials. Angewandte Chemie, 2023, 135, .	1.6	1
47	Tunable and Thermally Stable Luminescence from Polycyclic Aromatic Hydrocarbons Confined in a Zeolitic Imidazolate Framework. Advanced Optical Materials, 0, , 2201856.	3.6	1
48	From Blue to White: Sustainable Luminescent Metal Organic Framework for Hybrid Lightâ€Emitting Diodes. Advanced Optical Materials, 2023, 11, .	3.6	2
49	Dual atomic catalysts from COFâ€derived carbon for CO ₂ RR by suppressing HER through synergistic effects. , 2023, 5, .		18
50	Enhancing Dynamic Spectral Diffusion in Metal–Organic Frameworks through Defect Engineering. Journal of the American Chemical Society, 2023, 145, 1072-1082.	6.6	16
51	Pore Space Partition Approach of ZIF-8 for pH Responsive Codelivery of Ursolic Acid and 5-Fluorouracil. , 2023, 5, 466-472.		21
52	Phenanthroimidazole-Based Covalent Organic Frameworks with Enhanced Activity for the Photocatalytic Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2023, 6, 1126-1133.	2.5	5
53	Multiple Flexibilities Trigger Luminescent Piezochromism of Closely Packed Cu(I) Coordination Polymers. Advanced Optical Materials, 2023, 11, .	3.6	3
54	Detection Enhancement of One Multifunctional Cd-Metal–Organic Framework toward Tetracycline Antibiotics by Simply Mixing Eu ³⁺ in Suspension. Inorganic Chemistry, 2023, 62, 3573-3584.	1.9	10

CITATION REPORT

#ARTICLEIFCITATIONS55Coordination directed metal covalent organic frameworks. Materials Chemistry Frontiers, 2023, 7, 2023

CITATION REPORT