Drought Tolerant near Isogenic Lines (NILs) of Pusa 44 I Introgression of qDTY2.1 and qDTY3.1 Enhances Yield u Stress

Agriculture (Switzerland) 11, 64 DOI: 10.3390/agriculture11010064

Citation Report

#	Article	IF	CITATIONS
1	Introgression of qDTY1.1 Governing Reproductive Stage Drought Tolerance into an Elite Basmati Rice Variety "Pusa Basmati 1―through Marker Assisted Backcross Breeding. Agronomy, 2021, 11, 202.	3.0	17
2	Molecular Breeding for Improving Productivity of Oryza sativa L. cv. Pusa 44 under Reproductive Stage Drought Stress through Introgression of a Major QTL, qDTY12.1. Genes, 2021, 12, 967.	2.4	6
3	Development of near isogenic lines for grain softness through marker assisted backcross breeding in wheat. Journal of Plant Biochemistry and Biotechnology, 2022, 31, 410-420.	1.7	1
4	Drought Tolerant Near Isogenic Lines of Pusa 44 Pyramided With qDTY2.1 and qDTY3.1, Show Accelerated Recovery Response in a High Throughput Phenomics Based Phenotyping. Frontiers in Plant Science, 2021, 12, 752730.	3.6	2
6	Root System Architecture and Omics Approaches for Belowground Abiotic Stress Tolerance in Plants. Agriculture (Switzerland), 2022, 12, 1677.	3.1	5
7	Phytofunctionalized ZnO nanoparticles ameliorate water stress and its recovery in Oryza sativa L Acta Physiologiae Plantarum, 2022, 44, .	2.1	5
8	Marker assisted backcross breeding to develop the drought tolerant version of IR58025B, a popular maintainer line of hybrid rice. Oryza, 2022, 59, 418-429.	0.4	1
9	Principles of Variety Maintenance for Quality Seed Production. , 2023, , 153-172.		1
10	Genetic dissection of drought resistance for trait improvement in crops. Crop Journal, 2023, 11, 975-985.	5.2	5
11	Promising drought and salinity tolerance features of Nigrospora species existing as endophytes in Oryza sativa. 3 Biotech, 2023, 13, .	2.2	1
12	Integration of miRNA dynamics and drought tolerant QTLs in rice reveals the role of miR2919 in drought stress response. BMC Genomics, 2023, 24, .	2.8	3
13	Estimation of upland rice samples for the presence of the drought resistance gene qDTY1.1 using a DNA marker. Grain Economy of Russia, 2023, , 48-55.	0.6	0

14 Implications of tolerance to iron toxicity on root system architecture changes in rice (Oryza sativa) Tj ETQq0 0 0 rg 87/Overlock 10 Tf 50