Synthesis of graphene mesosponge <i>via</i> catalytic magnesium oxide

Journal of Materials Chemistry A 9, 14296-14308 DOI: 10.1039/d1ta02326h

Citation Report

#	Article	IF	CITATIONS
1	Porous nanographene formation on Î ³ -alumina nanoparticles <i>via</i> transition-metal-free methane activation. Chemical Science, 2022, 13, 3140-3146.	7.4	8
2	Ordered carbonaceous frameworks: a new class of carbon materials with molecular-level design. Chemical Communications, 2022, 58, 3578-3590.	4.1	14
3	Aligned Macroporous Monoliths by Ice-Templating. Bulletin of the Chemical Society of Japan, 2022, 95, 611-620.	3.2	16
4	3D Continuously Porous Graphene for Energy Applications. Advanced Materials, 2022, 34, e2108750.	21.0	53
5	Nanofabrication of Ni-incorporated three-dimensional ordered mesoporous carbon for catalytic methane decomposition. Journal of Environmental Chemical Engineering, 2022, 10, 107451.	6.7	5
6	Protrusions induction by carbon black on surface of activated carbon to enhance its catalytic activity. Fuel, 2022, 324, 124378.	6.4	5
7	Synthesis of microporous polymers with exposed C ₆₀ surfaces by polyesterification of fullerenol. Chemical Communications, 2022, 58, 7086-7089.	4.1	3
8	Capacitance of Edge-Free Three-Dimensional Graphene: New Perspectives on the Design of Carbon Structures for Supercapacitor Applications. SSRN Electronic Journal, 0, , .	0.4	0
9	Adsorption properties of templated nanoporous carbons comprising 1–2 graphene layers. , 2022, 1, 123-135.		4
10	Magnesium Hydroxide Templated Hierarchical Porous Carbon Nanosheets as Electrodes for High-Energy-Density Supercapacitors. ACS Applied Energy Materials, 2022, 5, 6805-6813.	5.1	8
11	High-performance paper-based biocathode fabricated by screen-printing an improved mesoporous carbon ink and by oriented immobilization of bilirubin oxidase. Scientific Reports, 2022, 12, .	3.3	5
12	Mechanistic insights of CO methanation over MgO using DFT. Materials Today: Proceedings, 2023, 72, 370-377.	1.8	0
13	Capacitance of edge-free three-dimensional graphene: New perspectives on the design of carbon structures for supercapacitor applications. Electrochimica Acta, 2022, 429, 141009.	5.2	6
14	Bimetallic ordered carbonaceous frameworks from Co- and Cu-porphyrin bimolecular crystals. Carbon, 2023, 201, 338-346.	10.3	3
15	The carbon chain growth during the onset of CVD graphene formation on γ-Al ₂ O ₃ is promoted by unsaturated CH ₂ ends. Physical Chemistry Chemical Physics, 2022, 24, 23357-23366.	2.8	5
16	Pore-size control of soft mesoporous carbon by hot pressing. , 2022, , .		0
17	One-step growth of the interconnected carbon nanotubes/graphene hybrids from cuttlebone-derived bi-functional catalyst for lithium-ion batteries. Journal of Materials Science and Technology, 2023, 149, 205-213.	10.7	15
18	Sequential Catalysis of Defected-Carbon and Solid Catalyst in Li–O ₂ Batteries. Journal of Physical Chemistry C, 2023, 127, 6239-6247.	3.1	7

CITATION REPORT

#	Article	IF	CITATIONS
19	Application of MgO-Titanomagnetite mixture in high-temperature catalytic pyrolysis of radiata pine. Biomass Conversion and Biorefinery, 0, , .	4.6	2
20	Edgeâ€Siteâ€Free and Topologicalâ€Defectâ€Rich Carbon Cathode for Highâ€Performance Lithiumâ€Oxygen Batteries. Advanced Science, 2023, 10, .	11.2	12
21	Mechanism of activated carbon-catalyzed methane decomposition process for the production of hydrogen and high-value carbon. Carbon Letters, 2023, 33, 1799-1809.	5.9	1
22	Quantitative study on catalysis of unpaired electrons in carbon edge sites. Carbon, 2023, 210, 118069.	10.3	3
23	Structural Engineering of Nanocarbons Comprising Graphene Frameworks <i>via</i> High-Temperature Annealing. Bulletin of the Chemical Society of Japan, 2023, 96, 510-518.	3.2	5
24	Development of Microdrip Enzyme Device Using Carbon-Coated Porous Silica Spheres. , 2023, 1, 1426-1435.		3
25	Nanoporous Membrane Electrodes with an Ordered Array of Hollow Giant Carbon Nanotubes. Advanced Functional Materials, 2023, 33, .	14.9	3
26	Chemistry of zipping reactions in mesoporous carbon consisting of minimally stacked graphene layers. Chemical Science, 2023, 14, 8448-8457.	7.4	7
27	Stereolithography 3D Printed Carbon Microlattices with Hierarchical Porosity for Structural and Functional Applications. Small, 2023, 19, .	10.0	1
28	Synthesis and Characteristics of 3D Graphene. Carbon Nanostructures, 2023, , 43-57.	0.1	0
29	From waste to wealth: Using MgO nanoparticles to transform ammonium into a valuable resource. Journal of Water Process Engineering, 2023, 56, 104331.	5.6	1
30	Hierarchically Porous and Minimally Stacked Graphene Cathodes for Highâ€Performance Lithium–Oxygen Batteries. Advanced Energy Materials, 2024, 14, .	19.5	1
31	Surface defect healing in annealing from nanoporous carbons to nanoporous graphenes. Physical Chemistry Chemical Physics, 2023, 25, 32972-32978.	2.8	1
32	Silicon Radicalâ€Induced CH ₄ Dissociation for Uniform Graphene Coating on Silica Surface. Small, 2024, 20, .	10.0	0
34	Prominent Structural Dependence of Quantum Capacitance Unraveled by Nitrogenâ€Đoped Graphene Mesosponge. Small, 2024, 20, .	10.0	0
35	Toward three-dimensionally ordered nanoporous graphene materials: template synthesis, structure, and applications. Chemical Science, 2024, 15, 1953-1965.	7.4	0
36	Structural control of nanoporous frameworks consisting of minimally stacked graphene walls. Frontiers in Materials, 0, 10, .	2.4	0
37	Thermal decomposition of magnesium carbonate in methane atmosphere for the synthesis of syngas: The effect of O2. Journal of Environmental Chemical Engineering, 2024, 12, 111864.	6.7	0

#	Article	IF	CITATIONS
38	Efficient Discrimination of Hazardous Organophosphate Flame Retardants via Cataluminescence-Based Multidimensional Ratiometric Sensing. Analytical Chemistry, 2024, 96, 4544-4552.	6.5	0
39	Nanoscale Optical Sensing Approaches for Quantitative Evaluation of Acupuncture and Moxibustion Therapeutic Efficacy. Journal of Nanoelectronics and Optoelectronics, 2024, 19, 69-74.	0.5	0
40	Controlled synthesis of graphene-based hybrids on hydration-dehydration treated bio-shell-derived catalysts. Ceramics International, 2024, 50, 18002-18011.	4.8	0
41	Ultra-high-performance graphene-based bulk materials strengthened by Y-type connection structure. Chemical Engineering Journal, 2024, 485, 149974.	12.7	0
42	Mesoporous nanoplates consisting of seamless graphene frameworks. Electrochimica Acta, 2024, 484, 144034.	5.2	0