Preclinical assessment of the efficacy and specificity of metastatic neuroblastoma

Nature Communications

12, 511

DOI: 10.1038/s41467-020-20785-x

Citation Report

#	Article	IF	CITATIONS
1	Hypoxia-inducible CAR expression: An answer to the on-target/off-tumor dilemma?. Cell Reports Medicine, 2021, 2, 100244.	6.5	7
2	Immune Checkpoints in Pediatric Solid Tumors: Targetable Pathways for Advanced Therapeutic Purposes. Cells, 2021, 10, 927.	4.1	8
3	The Role of Sphingolipids in Cancer Immunotherapy. International Journal of Molecular Sciences, 2021, 22, 6492.	4.1	11
4	Strategies to improve the safety profile of CAR-T therapy. Postępy Polskiej Medycyny I Farmacji, 2021, 8, 48-60.	0.0	O
5	Advances in immunotherapeutic targets for childhood cancers: A focus on glypican-2 and B7-H3., 2021, 223, 107892.		11
7	Ganglioside Composition Distinguishes Anaplastic Ganglioglioma Tumor Tissue from Peritumoral Brain Tissue: Complementary Mass Spectrometry and Thin-Layer Chromatography Evidence. International Journal of Molecular Sciences, 2021, 22, 8844.	4.1	5
8	Effective killing of cells expressing CD276 (B7-H3) by a bispecific T cell engager based on a new fully human antibody. Translational Oncology, 2021, 14, 101232.	3.7	6
9	Multi-input biocomputer gene circuits for therapeutic application. Current Opinion in Systems Biology, 2021, 28, 100371.	2.6	1
10	Molecular Basis and Clinical Features of Neuroblastoma. JMA Journal, 2021, 4, 321-331.	0.8	6
11	Significant Dark Current Suppression in Organic Photodetectors Using Side Chain Fluorination of Conjugated Polymer. Advanced Functional Materials, 2022, 32, 2108026.	14.9	28
12	CAR T Cell Therapy's Potential for Pediatric Brain Tumors. Cancers, 2021, 13, 5445.	3.7	10
13	Targeting Oncogenic Transcriptional Networks in Neuroblastoma: From N-Myc to Epigenetic Drugs. International Journal of Molecular Sciences, 2021, 22, 12883.	4.1	9
14	A Reversible Chemogenetic Switch for Chimeric Antigen Receptor Tâ€Cells**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	8
15	A Recurring Chemogenetic Switch for Chimeric Antigen Receptor T Cells. Angewandte Chemie, 0, , .	2.0	O
16	Outcome of children with relapsed high-risk neuroblastoma in Japan and analysis of the role of allogeneic hematopoietic stem cell transplantation. Japanese Journal of Clinical Oncology, 2022, 52, 486-492.	1,3	4
17	Synthetic Biology in Chimeric Antigen Receptor T (CAR T) Cell Engineering. ACS Synthetic Biology, 2022, 11, 1-15.	3.8	14
18	Chimeric antigen receptorâ€engineered adoptive cell therapy for AML: Current status and future perspectives. Immunomedicine, 2022, 2, .	0.7	0
19	Roadmap to affinity-tuned antibodies for enhanced chimeric antigen receptor T cell function and selectivity. Trends in Biotechnology, 2022, 40, 875-890.	9.3	17

#	Article	IF	CITATIONS
20	Better by design: What to expect from novel CAR-engineered cell therapies?. Biotechnology Advances, 2022, 58, 107917.	11.7	12
21	A Bibliometric and Knowledge-Map Analysis of CAR-T Cells From 2009 to 2021. Frontiers in Immunology, 2022, 13, 840956.	4.8	30
22	The Thermal Dose of Photothermal Therapy Generates Differential Immunogenicity in Human Neuroblastoma Cells. Cancers, 2022, 14, 1447.	3.7	6
23	miR-15a and miR-15b modulate natural killer and CD8+T-cell activation and anti-tumor immune response by targeting PD-L1 in neuroblastoma. Molecular Therapy - Oncolytics, 2022, 25, 308-329.	4.4	12
24	Special Chimeric Antigen Receptor (CAR) Modifications of T Cells: A Review. Frontiers in Oncology, 2022, 12, 832765.	2.8	18
25	<scp>CARâ€√</scp> cell therapy for lung cancer: Potential and perspective. Thoracic Cancer, 2022, 13, 889-899.	1.9	25
26	Preclinical Evaluation of CD64 As a Potential Target For CAR-T-cell Therapy For Acute Myeloid Leukemia. Journal of Immunotherapy, 2022, 45, 67-77.	2.4	6
27	Acoustofluidic-mediated molecular delivery to human T cells with a three-dimensional-printed flow chamber. Journal of the Acoustical Society of America, 2021, 150, 4534-4547.	1.1	5
28	Immunotherapy against Gliomas. , 0, , .		0
29	Sphingolipids and Lymphomas: A Double-Edged Sword. Cancers, 2022, 14, 2051.	3.7	2
30	How CAR T Cells Breathe. Cells, 2022, 11, 1454.	4.1	4
31	Verification of genetic differences and immune cell infiltration subtypes in the neuroblastoma tumour microenvironment during immunotherapy. World Journal of Surgical Oncology, 2022, 20, .	1.9	2
32	Advancing therapy for neuroblastoma. Nature Reviews Clinical Oncology, 2022, 19, 515-533.	27.6	97
34	Nanomedicines and cell-based therapies for embryonal tumors of the nervous system. Journal of Controlled Release, 2022, 348, 553-571.	9.9	5
35	AAMP is a binding partner of costimulatory human B7-H3. Neuro-Oncology Advances, 2022, 4, .	0.7	4
36	From Anti-HER-2 to Anti-HER-2-CAR-T Cells: An Evolutionary Immunotherapy Approach for Gastric Cancer. Journal of Inflammation Research, 0, Volume 15, 4061-4085.	3.5	1
37	Upregulation of CCNB2 and Its Perspective Mechanisms in Cerebral Ischemic Stroke and All Subtypes of Lung Cancer: A Comprehensive Study. Frontiers in Integrative Neuroscience, 0, 16, .	2.1	5
38	Revolution of CAR Engineering For Next-Generation Immunotherapy In Solid Tumors. Frontiers in Immunology, $0,13,.$	4.8	7

#	Article	IF	Citations
39	Immune checkpoint molecules in neuroblastoma: A clinical perspective. Seminars in Cancer Biology, 2022, 86, 247-258.	9.6	8
40	Chimeric Antigen Receptor (CAR)-T Cell Immunotherapy Against Thoracic Malignancies: Challenges and Opportunities. Frontiers in Immunology, 0, 13, .	4.8	4
41	Current progress in CARâ€T cell therapy for tumor treatment (Review). Oncology Letters, 2022, 24, .	1.8	7
42	Radiation enhances the efficacy of EGFR-targeted CAR-T cells against triple-negative breast cancer by activating NF-κB/Icam1 signaling. Molecular Therapy, 2022, 30, 3379-3393.	8.2	21
43	Extracellular vesicle-mediated immunoregulation in cancer. International Journal of Hematology, 0, , .	1.6	3
44	Applying a clinical lens to animal models of CAR-T cell therapies. Molecular Therapy - Methods and Clinical Development, 2022, 27, 17-31.	4.1	18
45	Synthetic Biology Technologies And Genetically Engineering Strategies For Enhanced Cell Therapeutics. Stem Cell Reviews and Reports, 2023, 19, 309-321.	3.8	2
46	Prospective approaches to enhancing CAR T cell therapy for glioblastoma. Frontiers in Immunology, 0, 13, .	4.8	6
47	Fully murine CD105-targeted CAR-T cells provide an immunocompetent model for CAR-T cell biology. Oncolmmunology, 2022, 11, .	4.6	1
48	CAR cell design strategies in solid tumors. International Immunopharmacology, 2022, 113, 109345.	3.8	0
49	Hopes on immunotherapy targeting B7-H3 in neuroblastoma. Translational Oncology, 2023, 27, 101580.	3.7	10
50	ERK Inhibitor Ulixertinib Inhibits High-Risk Neuroblastoma Growth In Vitro and In Vivo. Cancers, 2022, 14, 5534.	3.7	3
51	Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours. Nature Reviews Clinical Oncology, 2023, 20, 49-62.	27.6	74
52	Immunotherapy approaches for rare pediatric solid tumors: advances and future directions. Current Opinion in Pediatrics, 2023, 35, 63-74.	2.0	0
53	Fibroblasts and macrophages cooperate to create a pro-tumorigenic and immune resistant environment via activation of TGF- \hat{l}^2 /IL-6 pathway in neuroblastoma. Oncolmmunology, 2022, 11 , .	4.6	9
54	Preclinical optimization of a GPC2-targeting CAR T-cell therapy for neuroblastoma. , 2023, 11, e005881.		3
55	Chimeric Antigen Receptor T-Cell Therapy for Solid Tumors: The Past and the Future. Journal of Immunotherapy and Precision Oncology, 2023, 6, 19-30.	1.4	1
56	Chimeric antigen receptor-modified cells for the treatment of solid tumors: First steps in a thousand-mile march., 2023,, 97-131.		0

#	Article	IF	CITATIONS
57	Current advances and challenges in CAR T-Cell therapy for solid tumors: tumor-associated antigens and the tumor microenvironment. Experimental Hematology and Oncology, 2023, 12 , .	5.0	37
58	Anti-glycan monoclonal antibodies: Basic research and clinical applications. Current Opinion in Chemical Biology, 2023, 74, 102281.	6.1	1
59	Current progress in chimeric antigen receptor-modified T cells for the treatment of metastatic breast cancer. Biomedicine and Pharmacotherapy, 2023, 162 , 114648 .	5.6	1
61	The immunotherapy advancement targeting malignant blastomas in early childhood. Frontiers in Oncology, 0, 13, .	2.8	0
62	Novel scFv against Notch Ligand JAG1 Suitable for Development of Cell Therapies toward JAG1-Positive Tumors. Biomolecules, 2023, 13, 459.	4.0	0
63	Visualizing cell–cell communication using synthetic notch activated MRI. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	7
64	Tuning CARs: recent advances in modulating chimeric antigen receptor (CAR) T cell activity for improved safety, efficacy, and flexibility. Journal of Translational Medicine, 2023, 21, .	4.4	5
65	Synthetic biology-inspired cell engineering in diagnosis, treatment, and drug development. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	17
66	A neutrophil mimicking metal-porphyrin-based nanodevice loaded with porcine pancreatic elastase for cancer therapy. Nature Communications, 2023, 14, .	12.8	12
67	Targeting B7-H3—A Novel Strategy for the Design of Anticancer Agents for Extracranial Pediatric Solid Tumors Treatment. Molecules, 2023, 28, 3356.	3.8	4
68	Stalled CARs: Mechanisms of Resistance to CAR T Cell Therapies. Annual Review of Cancer Biology, 2023, 7, 23-42.	4.5	1
69	The Notch signaling pathway: a potential target for cancer immunotherapy. Journal of Hematology and Oncology, 2023, 16 , .	17.0	19
70	B7-H3 in Pediatric Tumors: Far beyond Neuroblastoma. Cancers, 2023, 15, 3279.	3.7	3
71	EXPRESS: Novel Strategies for Chimeric Antigen Receptor T-Cell Therapy for Acute Lymphoblastic Leukemia: Moving Beyond CD19. Journal of Investigative Medicine, 0, , .	1.6	0
72	Pathophysiological roles and applications of glycosphingolipids in the diagnosis and treatment of cancer diseases. Progress in Lipid Research, 2023, 91, 101241.	11.6	3
73	Updated Clinical Perspectives and Challenges of Chimeric Antigen Receptor-T Cell Therapy in Colorectal Cancer and Invasive Breast Cancer. Archivum Immunologiae Et Therapiae Experimentalis, 2023, 71, .	2.3	1
74	A Retrospective Analysis of the Therapeutic Outcomes of 117 Neuroblastoma Patients Treated at a Single Pediatric Oncology Center in China. Cancer Control, 2023, 30, .	1.8	0
7 5	Exploring CAR-T Cell Therapy Side Effects: Mechanisms and Management Strategies. Journal of Clinical Medicine, 2023, 12, 6124.	2.4	1

#	Article	IF	CITATIONS
76	Adoptive cell therapy in paediatric extracranial solid tumours: current approaches and future challenges. European Journal of Cancer, 2023, 194, 113347.	2.8	O
77	The yes-associated protein (YAP) is associated with resistance to anti-GD2 immunotherapy in neuroblastoma through downregulation of <i>ST8SIA1</i> . Oncolmmunology, 2023, 12, .	4.6	1
78	Current status and future prospects of chimeric antigen receptor-T cell therapy in lymphoma research: A bibliometric analysis. Human Vaccines and Immunotherapeutics, 2023, 19, .	3.3	0
79	Synthetic transcription factor engineering for cell and gene therapy. Trends in Biotechnology, 2023, ,	9.3	3
80	Neuroblastoma: an ongoing cold front for cancer immunotherapy. , 2023, 11, e007798.		0
81	CAR-T cell therapy: Where are we now, and where are we heading?. Blood Science, 2023, 5, 237-248.	0.9	0
82	New progress in the treatment of diffuse midline glioma with H3K27M alteration. Heliyon, 2024, 10, e24877.	3.2	0
83	CAR designs for solid tumors: overcoming hurdles and paving the way for effective immunotherapy. Biophysics Reports, 2023, 9, 279.	0.8	0
85	CAR T cells redirected to B7-H3 for pediatric solid tumors: Current status and future perspectives., 2024, 3, 100160.		0