Water as the reaction medium in organic chemistry: fro friend

Chemical Science 12, 4237-4266

DOI: 10.1039/d0sc06000c

Citation Report

#	Article	IF	CITATIONS
1	Continuous flow heterogeneous catalytic reductive aminations under aqueous micellar conditions enabled by an oscillatory plug flow reactor. Green Chemistry, 2021, 23, 5625-5632.	4.6	19
2	Si-Gly-CD-PdNPs as a hybrid heterogeneous catalyst for environmentally friendly continuous flow Sonogashira cross-coupling. Green Chemistry, 2021, 23, 7210-7218.	4.6	14
3	Pd-Catalysed Suzuki–Miyaura cross-coupling of aryl chlorides at low catalyst loadings in water for the synthesis of industrially important fungicides. Green Chemistry, 2021, 23, 8169-8180.	4.6	18
4	Interfacing sugar-based surfactant micelles and Cu nanoparticles: a nanoreactor for C–S coupling reactions in water. Green Chemistry, 2021, 23, 6322-6329.	4.6	10
5	Illuminating a Path4914. Copyright 2016 Wiley for Organic Synthesis Towards Sustainability. No One Said It Would Be Easy…. Synlett, 2021, 32, 1588-1605.	1.0	15
6	Synthetic Organic "Aquachemistry―that Relies on Neither Cosolvents nor Surfactants. ACS Central Science, 2021, 7, 739-747.	5.3	24
7	Harnessing Additional Capability from in Water Reaction Conditions: Aldol versus Knoevenagel Chemoselectivity. Advanced Synthesis and Catalysis, 2021, 363, 3539-3545.	2.1	3
8	<scp>Polydopamineâ€Encapsulated</scp> Dendritic Organosilica Nanoparticles as Amphiphilic Platforms for Highly Efficient Heterogeneous Catalysis in Water. Chinese Journal of Chemistry, 2021, 39, 1975-1982.	2.6	8
9	Circular Aqueous Fmoc/tâ€Bu Solidâ€Phase Peptide Synthesis. ChemSusChem, 2021, 14, 3231-3236.	3.6	11
10	Rose-like Bi ₂ WO ₆ Nanostructure for Visible-Light-Assisted Oxidation of Lignocellulose-Derived 5-Hydroxymethylfurfural and Vanillyl Alcohol. ACS Applied Nano Materials, 2021, 4, 9080-9093.	2.4	23
11	Palladium-Catalyzed Mizoroki–Heck and Copper-Free Sonogashira Coupling Reactions in Water Using Thermoresponsive Polymer Micelles. Polymers, 2021, 13, 2717.	2.0	5
12	Synthetic applications of polar organometallic and alkali-metal reagents under air and moisture. Current Opinion in Green and Sustainable Chemistry, 2021, 30, 100487.	3.2	26
13	Organic synthesis in Aqueous Multiphase Systems â€" Challenges and opportunities ahead of us. Current Opinion in Colloid and Interface Science, 2021, 56, 101506.	3.4	28
14	Green on-water multicomponent approach for the synthesis of pyrrolo[2,3-d]pyrimidines. Tetrahedron Letters, 2021, 81, 153336.	0.7	6
15	Bisulfite Addition Compounds as Substrates for Reductive Aminations in Water. Organic Letters, 2021, 23, 7205-7208.	2.4	6
16	Micelleâ€Mediated Trimerization of Ynals to Orthogonally Substituted 4Hâ€Pyrans in Water: Downstream Rearrangement to Bioactive 2,8â€dioxabicyclo[3.3.1]nonaâ€3,6â€diene Frameworks. European Journal of Organic Chemistry, 0, , .	1.2	4
17	A 2000 to 2020 Practitioner's Guide to Chiral Amineâ€Based Enantioselective Aldol Reactions: Ketone Substrates, Best Methods, in Water Reaction Environments, and Defining Nuances European Journal of Organic Chemistry, 2022, 2022, .	1.2	7
18	Micelle enabled C(sp ²)–C(sp ³) cross-electrophile coupling in water <i>via</i> synergistic nickel and copper catalysis. Chemical Communications, 2021, 57, 7629-7632.	2.2	7

#	Article	IF	CITATIONS
19	Building bio-Profiles for common catalytic reactions. Green Chemistry, 2021, 23, 6373-6391.	4.6	7
20	High Turnover Pd/C Catalyst for Nitro Group Reductions in Water. One-Pot Sequences and Syntheses of Pharmaceutical Intermediates. Organic Letters, 2021, 23, 8114-8118.	2.4	20
21	Improved Buchwald–Hartwig Amination by the Use of Lipids and Lipid Impurities. Organometallics, 0, , .	1.1	2
22	Efficient synthesis of novel chromenopyrido $[3,2-e]$ is so this zolo $[2,3-a]$ pyrimidines via a non-catalytic one-pot three-component reaction. Research on Chemical Intermediates, $0, 1$.	1.3	0
23	Architecting water-dispersible organic nanopowder from volatile microemulsion: An emerging colloidal technology. Colloids and Interface Science Communications, 2021, 45, 100536.	2.0	9
24	Advancement of Cu(III) and Fe(III) directed oxidative transformations: Recent impact of aqueous micellar environment. Journal of Molecular Liquids, 2022, 347, 117993.	2.3	7
25	"On-water―reduction of α-keto amide by Hantzsch ester: A chemoselective catalyst- and additive-free way to α-hydroxy amide. Tetrahedron Letters, 2021, 86, 153524.	0.7	4
26	Using polymeric hydroxypropyl methylcellulose as an alternative to †micellar catalysis†to enable chemical reactions in water. Current Opinion in Green and Sustainable Chemistry, 2022, 33, 100571.	3.2	6
27	Fostering Research Synergies between Chemists in Swiss Academia and at Novartis. Chimia, 2021, 75, 936.	0.3	1
28	Molecular Insights on Solvent Effects in Organic Reactions as Obtained through Computational Chemistry Tools. Journal of Organic Chemistry, 2022, 87, 1630-1640.	1.7	11
29	The Photoinduced Electrocyclization Reaction of Triphenylamine (TPA) in Sustainable and Confined Micellar Solutions: A Steadyâ€State and Laser Flash Photolysis Approach. ChemPhotoChem, 2022, 6, .	1.5	6
30	Learning Green Chemistry and its principles from Nature's process and development of green procedures mimicking nature. Chemistry Teacher International, 2022, 4, 127-141.	0.9	4
31	Solvation Effects in Organic Chemistry: A Short Historical Overview. Journal of Organic Chemistry, 2022, 87, 1616-1629.	1.7	36
32	Potential energy profile for the Cl + (H2O)3 → HCl + (H2O)2OH reaction. A CCSD(T) study. Physical Chemistry Chemical Physics, 2021, 23, 26837-26842.	1.3	2
33	Au NPs fabricated on biguanidine-modified Zr-UiO-66 MOFs: a competent reusable heterogeneous nanocatalyst in the green synthesis of propargylamines. New Journal of Chemistry, 2022, 46, 2829-2836.	1.4	6
34	Progress toward a biomimetic synthesis of pegaharmaline A. Organic and Biomolecular Chemistry, 2022, 20, 1275-1283.	1.5	1
35	The Potential of Micellar Media in the Synthesis of DNAâ€Encoded Libraries. Chemistry - A European Journal, 2022, , .	1.7	7
36	Nickelâ€Catalyzed Thioesterification Enabled by a Visibleâ€Light Organophotoredox Catalyst under Mild Conditions. ChemPhotoChem, 0, , .	1.5	2

#	ARTICLE	IF	CITATIONS
37	Metal-Free C3-H Hydrazination of Imidazo[1,2-a]pyridine with Azodiformates in Water at Room Temperature. Heterocycles, 2022, 104, 310.	0.4	2
38	Controlled and Predictably Selective Oxidation of Activated and Unactivated C(sp ³)–H Bonds Catalyzed by a Molybdenum-Based Metallomicellar Catalyst in Water. Journal of Organic Chemistry, 2022, 87, 4061-4077.	1.7	12
39	Visible-light-mediated regioselective synthesis of novel thiazolo $[3,2-\langle i \rangle b \langle j \rangle][1,2,4]$ triazoles: advantageous synthetic application of aqueous conditions. Organic and Biomolecular Chemistry, 2022, 20, 584-595.	1.5	7
40	"On water―Catalytic Michael Addition Between α,β-Unsaturated Ketone and Nitromethane. Catalysis Letters, 0, , 1.	1.4	0
41	Copper Sulfateâ€Catalyzed Asymmetric 1,4â€Addition of Amidoâ€Functionalized Allylboronates to Maleimides in Water. Asian Journal of Organic Chemistry, 0, , .	1.3	0
42	Morphology Control of Multicompartment Micelles in Water through Hierarchical Self-Assembly of Amphiphilic Terpolymers. Macromolecules, 2022, 55, 1354-1364.	2.2	9
43	Micellar catalysis beyond the hydrophobic effect: Efficient palladium catalyzed Suzuki-Miyaura coupling of water and organic solvent insoluble pigments with food grade surfactants. Journal of Organometallic Chemistry, 2022, 962, 122267.	0.8	6
44	Water Mediated Direct Thioamidation of Aldehydes at Room Temperature. Journal of Organic Chemistry, 2022, 87, 2410-2420.	1.7	10
45	Green Chemistry in the Synthesis of Pharmaceuticals. Chemical Reviews, 2022, 122, 3637-3710.	23.0	155
46	An environmentally responsible synthesis of the antitumor agent lapatinib (Tykerb). Green Chemistry, 2022, 24, 3640-3643.	4.6	11
47	Organometallic single-source precursors to zinc oxide-based nanomaterials., 2022,, 245-279.		1
48	Single-Micelle and Single-Zinc-Particle Imaging Provides Insights into the Physical Processes Underpinning Organozinc Reactions in Water. Journal of the American Chemical Society, 2022, 144, 3285-3296.	6.6	14
49	Replacement of Less-Preferred Dipolar Aprotic and Ethereal Solvents in Synthetic Organic Chemistry with More Sustainable Alternatives. Chemical Reviews, 2022, 122, 6749-6794.	23.0	58
50	Electrophilic Fluorination of Heterocyclic Compounds with NF Reagents in Unconventional Media. Chemistry of Heterocyclic Compounds, 2022, 58, 84-96.	0.6	5
51	DoEâ€Driven Development of an Organocatalytic Enantioselective Addition of Acetaldehyde to Nitrostyrenes in Water**. Chemistry - A European Journal, 2022, , .	1.7	7
52	Sustainable and Scalable Two-Step Synthesis of Thenfadil and Some Analogs in Deep Eutectic Solvents: From Laboratory to Industry. ACS Sustainable Chemistry and Engineering, 2022, 10, 4065-4072.	3.2	14
53	Catalyst-free ultrasound assisted novel one pot pseudo five component synthesis of aryl-bis-[1H-pyrazol-5-ol-4-yl]methanes, het(aryl)-bis-[1H-pyrazol-5-ol-4-yl]methanes and their 1-phenyl derivatives in aqueous medium. Green Synthesis and Catalysis, 2022, 3, 190-193.	3.7	8
54	Directing group enabled â€~On-Water' C H bond functionalization of ferrocene derivatives. Journal of Organometallic Chemistry, 2022, 964, 122303.	0.8	8

#	ARTICLE	IF	Citations
55	A rosin-based surfactant enabling cross-couplings of vinyl dibromides with sulfonamides in water. Journal of Organometallic Chemistry, 2022, 965-966, 122321.	0.8	6
56	â€In-water', nickel-catalyzed mild preparation of allylic amines employing alcohols: application to â€all-water' synthesis of pharmaceuticals. Green Chemistry, 2022, 24, 3977-3984.	4.6	13
57	Wellâ€Controlled Living Polymerization of Phenylacetylenes in Water: Synthesis of Waterâ€Soluble Stereoregular Telechelic Poly(phenylacetylene)s. Angewandte Chemie - International Edition, 2022, 61, .	7.2	8
58	Amphiphilic indoles as efficient phaseâ€transfer catalysts for bromination in water. ChemSusChem, 2022, , .	3.6	3
59	Amide and Peptide Couplings Mediated by Pivaloyl Mixed Anhydrides in Aqueous Media. ACS Sustainable Chemistry and Engineering, 2022, 10, 5307-5314.	3.2	11
60	Wellâ€Controlled Living Polymerization of Phenylacetylenes in Water: Synthesis of Waterâ€Soluble Stereoregular Telechelic Poly(phenylacetylene)s. Angewandte Chemie, 2022, 134, .	1.6	0
61	Deep eutectic solvents meet safe, scalable and sustainable hydrogenations enabled by aluminum powder and Pd/C. Green Chemistry, 2022, 24, 4388-4394.	4.6	12
62	Metal-Catalyst-Free Radical Cyclization of 1,6-Enynes for the Selective and Switchable Synthesis of Lactams in Water. ACS Sustainable Chemistry and Engineering, 2022, 10, 6057-6062.	3.2	25
63	Environmentally Responsible and Cost-Effective Synthesis of the Antimalarial Drug Pyronaridine. Organic Letters, 2022, 24, 3342-3346.	2.4	9
64	Nanoconfinement Effects of Micellar Media in Asymmetric Catalysis. Advanced Synthesis and Catalysis, 2022, 364, 1776-1797.	2.1	15
65	Recent Advances of Thiamine in Organic Synthesis. Advanced Synthesis and Catalysis, 0, , .	2.1	0
66	High Yield Silica-Based Emerging Nanoparticles Activities for Hybrid Catalyst Applications. Topics in Catalysis, 2022, 65, 1706-1718.	1.3	12
67	Sustainable Ruthenium(II)-Catalyzed C–H Activations in and on H ₂ O. ACS Sustainable Chemistry and Engineering, 2022, 10, 6871-6888.	3.2	20
68	Wang resin catalyzed green synthesis of 1,8-dioxo-octahydroxanthene derivatives and their in silico/in vitro evaluation against SIRT1. Journal of Molecular Structure, 2022, , 133313.	1.8	3
69	Water enabled, nickel-catalyzed highly chemoselective <i>C</i> -allylation of (NH)-indoles employing alcohols. Green Chemistry, 2022, 24, 4921-4927.	4.6	7
70	Water-soluble diphosphine ligands for rhodium-catalyzed branch-selective hydroaminomethylation of vinyl arenes with anilines in water. Green Chemistry, 2022, 24, 4420-4424.	4.6	9
71	Micelle-guided Morita–Baylis–Hillman reaction of ketones in water. Organic and Biomolecular Chemistry, 2022, 20, 4888-4893.	1.5	8
72	Allylations of aryl/heteroaryl ketones: neat, clean, and sustainable. Applications to targets in the pharma- and nutraceutical industries. Green Chemistry, 2022, 24, 4909-4914.	4.6	3

#	ARTICLE	IF	Citations
74	Lewis Adduct-Dissociating Hydrolysis of Boratrane for Water-Triggered Dehydration of Copolymers with a Hydrophobic Moiety. ACS Macro Letters, 0, , 766-771.	2.3	1
75	Solid acid-catalyzed one-pot multi-step cascade reaction: Multicomponent synthesis of indol-3-yl acetates and indol-3-yl acetamides in water. Tetrahedron, 2022, 117-118, 132839.	1.0	2
76	Synthesis of Polycyclic Quinazolinones through C(sp ³)â^'H Functionalization of Inert Alkanes or Visibleâ€Lightâ€Promoted Oxidation Decarboxylation of <i>N</i> â€Hydroxyphthalimide Esters. European Journal of Organic Chemistry, 2022, 2022, .	1.2	7
77	Sustainable and Benchâ€Stable Photoactive Aqueous Nanoaggregates of Cu(II) for ppm Level Cu(I) Catalysis in Water. Advanced Functional Materials, 2022, 32, .	7.8	6
78	Visible-Light Photoredox Catalysis in Water. Journal of Organic Chemistry, 2023, 88, 6284-6293.	1.7	27
79	Photoinduced Electron Transfer in a Porphyrin–Fullerene Dyad at a Liquid Interface. Journal of Physical Chemistry B, 2022, 126, 4723-4730.	1.2	2
80	Environmentally Benign Approaches towards the Synthesis of Quinolines. ChemistrySelect, 2022, 7, .	0.7	7
81	Anomaly of Pyrano[2,3â€c]pyrazole Synthesis towards Pyrazolylâ€arylâ€methylâ€malononitrile Derivatives and Their Antimicrobial Activity. ChemistrySelect, 2022, 7, .	0.7	3
82	Direct Câ^'H Trifluoromethylation of (Hetero)Arenes in Water Enabled by Organic Photoredoxâ€Active Amphiphilic Nanoparticles. Chemistry - A European Journal, 2022, 28, .	1.7	10
83	Wang resin catalyzed sonochemical synthesis of dihydropyrano[2,3-c]pyrazole derivatives and their interactions with SIRT1. Journal of Molecular Structure, 2022, 1266, 133527.	1.8	10
84	Water-soluble ruthenium complex-pyrene dyads with extended triplet lifetimes for efficient energy transfer applications. Dalton Transactions, 2022, 51, 10799-10808.	1.6	10
85	Green Solvents for Sustainable Organic Synthesis. , 2022, , 104-128.		0
86	Photoredox-catalyzed coupling of acyl oxime acetates with thiophenols to give arylthioesters in water at room temperature. Green Chemistry, 2022, 24, 6849-6853.	4.6	7
87	Noncatalytic on water aldol reaction of isatins with cyclic 1,3-diketones at room temperature without the need for subsequent chromatography. Mendeleev Communications, 2022, 32, 543-545.	0.6	1
88	Micellar Catalysis as a Tool for C–H Bond Functionalization toward C–C Bond Formation. Organometallics, 2022, 41, 3084-3098.	1.1	15
89	ppm Pdâ€Containing Nanoparticles as Catalysts for Negishi Couplings … <i>in Water</i> . Angewandte Chemie, 2022, 134, .	1.6	2
90	ppm Pdâ€Containing Nanoparticles as Catalysts for Negishi Couplings … <i>in Water</i> . Angewandte Chemie - International Edition, 2022, 61, .	7. 2	12
91	Nanoparticles for catalysis in aqueous media. Current Opinion in Green and Sustainable Chemistry, 2022, 38, 100691.	3.2	4

#	Article	IF	CITATIONS
92	Hydrophobically-enhanced "on water―cycloaddition of CO ₂ to long-chain terminal epoxides. Chemical Communications, 2022, 58, 11535-11538.	2.2	5
93	Impact of aqueous micellar media on biocatalytic transformations involving transaminase (ATA); applications to chemoenzymatic catalysis. Green Chemistry, 2022, 24, 6172-6178.	4.6	23
94	Biocatalysis, solvents, and green metrics in sustainable chemistry. , 2022, , 1-22.		3
95	Comprehensive Review on Metal Nanoparticles Catalyzed Synthesis of Aza- and Oxa-Heterocycles Reported in 2021. Mini-Reviews in Organic Chemistry, 2023, 20, 800-817.	0.6	4
96	Cascade Processes with Micellar Reaction Media: Recent Advances and Future Directions. Molecules, 2022, 27, 5611.	1.7	8
97	Potassium dihydrogen phosphateâ€catalyzed synthesis of benzylpyrazolyl coumarin and pyrano [2,3â€ <i>c</i>] pyrazole derivatives via cascade—Oneâ€pot—Multicomponent reaction. Journal of Heterocyclic Chemistry, 2023, 60, 123-133.	1.4	2
98	Switchable aqueous catalytic systems for organic transformations. Communications Chemistry, 2022, 5, .	2.0	7
99	Sustainable Wackerâ€Type Oxidations. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
100	Palladiumâ€Catalyzed Cascade Reaction in Water to Imidazo[1,2â€ <i>a</i>]pyridazines as Switchable DSEgens, AlEgens, and ACQgens**. Chemistry - A European Journal, 2022, 28, .	1.7	8
101	Sustainable Wackerâ€Type Oxidations. Angewandte Chemie, 2022, 134, .	1.6	0
102	Efficient catalysis in dynamic nanomicelles of PS-750-M suspended in water. Current Opinion in Green and Sustainable Chemistry, 2022, 38, 100690.	3.2	9
103	Facile synthesis of isoquinolines and isoquinoline <i>N</i> -oxides <i>via</i> a copper-catalyzed intramolecular cyclization in water. RSC Advances, 2022, 12, 30248-30252.	1.7	5
104	Dosage delivery of chiral ruthenium catalysts using non-ionic surfactants for asymmetric transfer hydrogenation reactions in aqueous media. Reaction Chemistry and Engineering, 2023, 8, 424-431.	1.9	1
105	Coupling photocatalytic water oxidation with reductive transformations of organic molecules. Nature Communications, 2022, 13, .	5.8	17
106	"On-Water―Reaction of (Thio)isocyanate: A Sustainable Process for the Synthesis of Unsymmetrical (Thio)ureas. Organic Process Research and Development, 2022, 26, 3141-3152.	1.3	4
107	Preparation and Characterization of Bifunctional PEG/en Nanomagnetic Phase-Transfer Catalyst: Green Synthesis of 2-Amino-3-Cyano-4H-Pyrans. Polycyclic Aromatic Compounds, 2023, 43, 7355-7367.	1.4	1
108	Hydrophobicâ€Substrateâ€Selective Dehydrative Condensations at the Emulsion Interface under Conditions where Competitive Reactions Proceed in the Bulk Aqueous Phase. Asian Journal of Organic Chemistry, 2023, 12, .	1.3	1
109	Benzylic C(sp ³)–H Bonds Play the Dual Role of Starting Material and Oxidation Inhibitor for Hydrazides in the Electrochemical Synthesis of Hydrazones. Journal of Organic Chemistry, 2022, 87, 15077-15085.	1.7	2

#	Article	IF	CITATIONS
110	${\it Micellar \ Effects \ and \ their \ Relevance \ in \ Photochemistry \ and \ Photocatalysis. \ Chem Cat Chem, 2023, 15, .}$	1.8	5
111	Metal–Micelle Interaction Leading to Spontaneous Formation of Ligand-Free Palladium(0) Nanoparticles: Highly Efficient Catalysis Enabling Biaryl Ketone Formation from Carboxylic Acid Derivatives. ACS Applied Materials & Samp; Interfaces, 2022, 14, 50947-50955.	4.0	5
112	Dual-Beam Photothermal Spectroscopy Employing a Mach–Zehnder Interferometer and an External Cavity Quantum Cascade Laser for Detection of Water Traces in Organic Solvents. Analytical Chemistry, 2022, 94, 16353-16360.	3.2	9
113	Pushing Photochemistry into Water: Acceleration of the Diâ€Ï€â€Methane Rearrangement and the PaternA³â€Büchi Reaction "Onâ€Water― Chemistry - A European Journal, 2023, 29, .	1.7	3
114	Nanomicelle-enabled chemoenzymatic catalysis: Clean chemistry in "dirty―water. Chem Catalysis, 2023, 3, 100458.	2.9	9
115	Palladium catalyzed amidation of phenyl carboxylates and anilines using aqueous micellar catalysis. Tetrahedron Letters, 2023, 114, 154242.	0.7	4
116	Micelle-mediated multicomponent cross-coupling in water: general construction of 3-chalcogenylindoles. Green Chemistry, 2023, 25, 1311-1321.	4.6	4
117	(NHC-olefin)-nickel(0) nanoparticles as catalysts for the ($\langle i \rangle Z \langle j \rangle$)-selective semi-hydrogenation of alkynes and ynamides. Chemical Communications, 2023, 59, 1537-1540.	2.2	7
118	Recent advances in the synthesis of active pharmaceutical and agrochemical ingredients in micellar media. Current Opinion in Green and Sustainable Chemistry, 2023, 39, 100729.	3.2	8
119	A rapid synthesis of 5-substituted 7-amino-6-cyano-1,5-dihydro-1H-pyrano[2,3-d]pyrimidine-2,4(3H)-diones and their in silico / evaluation against SIRT1. Journal of Molecular Structure, 2023, 1276, 134753.	1.8	2
120	First Evidence of Pheomelanin-UVA-Driven Synthesis of Pummerer's Ketones by Peroxidase-Mediated Oxidative Coupling of Substituted Phenols. ACS Omega, 2022, 7, 45688-45696.	1.6	2
121	Ultrasmall Cu ^I Nanoparticles Stabilized on Surface of HPMC: An Efficient Catalyst for Fast and Organic Solventâ€Free Tandem Click Chemistry in Water. ChemSusChem, 2023, 16, .	3.6	2
122	Recent progress in copper-free Sonogashira-Hagihara cross-couplings in water. Chem Catalysis, 2023, 3, 100485.	2.9	8
123	Where Chemocatalysis Meets Biocatalysis: In Water. Chemical Reviews, 2023, 123, 5262-5296.	23.0	42
124	Trichloromethyl Carbanion in Aqueous Micelles: Mechanistic Insights and Access to Carboxylic Acids from (Hetero)aryl Halides. ACS Catalysis, 2022, 12, 15686-15695.	5.5	10
125	Suzuki coupling in Tröger's bases: overcoming challenging substrates through aqueous micellar catalysis. ChemCatChem, 0, , .	1.8	0
126	Ultrasound Assisted One-Pot Synthesis of Novel 3-(Aryl)-5-((4-(phenyldiazenyl)phenoxy)methyl)isoxazolines in Water. MolBank, 2022, 2022, M1529.	0.2	1
127	Anodic Cross-Coupling of Biomass Platform Chemicals to Sustainable Biojet Fuel Precursors. Journal of the American Chemical Society, 2022, 144, 23649-23656.	6.6	15

#	Article	IF	Citations
128	Palladium-catalyzed cross-couplings in the synthesis of agrochemicals., 2022, 1, 125-138.		11
129	The E factor at 30: a passion for pollution prevention. Green Chemistry, 2023, 25, 1704-1728.	4.6	54
130	Reshuffle Bonds by Ball Milling: A Mechanochemical Protocol for Charge-Accelerated Aza-Claisen Rearrangements. Molecules, 2023, 28, 807.	1.7	0
131	Iron catalyzed organic reactions in water: A "nature-like―synthesis. Current Opinion in Green and Sustainable Chemistry, 2023, 40, 100754.	3.2	2
132	Kinetics and Mechanisms of Ligand-Exchange of Cu(Methionine)2 by Polyamines. Oriental Journal of Chemistry, 2022, 38, 1567-1570.	0.1	0
133	Green photocatalytic syntheses using water as solvent/hydrogen source/oxygen source. Current Opinion in Green and Sustainable Chemistry, 2023, 40, 100760.	3.2	10
134	Aqua/Mechanochemical Mediated Synthesis of Novel Spiro [Indole–Pyrrolidine] Derivatives. International Journal of Molecular Sciences, 2023, 24, 2307.	1.8	2
135	Advances in Organocatalytic Asymmetric Reactions Involving Thioesters. Acta Chimica Sinica, 2023, 81, 64.	0.5	6
136	$\mbox{N-}Formamide as a carbonyl precursor in the catalytic synthesis of Passerini adducts under aqua and mechanochemical conditions. RSC Advances, 2023, 13, 4019-4031.$	1.7	0
137	Visible light mediated organocatalytic dehydrogenative aza-coupling of 1,3-diones using aryldiazonium salts. RSC Advances, 2023, 13, 3147-3154.	1.7	1
138	Ecofriendly Approach for the Largeâ€Scale Synthesis of 4â€Unsubstituted Coumarinâ€3â€carboxylic Acids from oâ€Hydroxyâ€araldehydes with Meldrum's Acid in the Waterâ€SDS Micellar System. ChemistrySelect, 2023, 8, .	0.7	0
139	Double click macrocyclization with Sondheimer diyne of aza-dipyrrins for B–F _{ree} bioorthogonal imaging. Chemical Communications, 2023, 59, 1951-1954.	2.2	1
140	Micelle-Derived Palladium Nanoparticles for Suzuki–Miyaura Coupling Reactions in Water at Room Temperature. ACS Applied Nano Materials, 2023, 6, 1592-1602.	2.4	3
141	Developing a transition-metal-free green protocol for the electrophilic hydrazination of silyl enol ethers using diazo electrophiles with EtOH–H ₂ O as a safe solvent. Green Chemistry, 2023, 25, 2368-2377.	4.6	6
142	An electron donor–acceptor photoactivation strategy for the synthesis of S-aryl dithiocarbamates using thianthrenium salts under mild aqueous micellar conditions. Chinese Chemical Letters, 2023, 34, 108403.	4.8	12
143	Hydrogen Isotope Exchange by Homogeneous Iridium Catalysis in Aqueous Buffers with Deuterium or Tritium Gas. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
144	Chemical Transformations in Supramolecular Hydrogels. ACS Catalysis, 2023, 13, 5544-5570.	5.5	5
145	Recent advances in metal-, organo-, and biocatalyzed one-pot tandem reactions under environmentally responsible conditions. Current Opinion in Green and Sustainable Chemistry, 2023, 41, 100799.	3.2	3

#	Article	IF	Citations
146	Lactate anion catalyzes aminolysis of polyesters with anilines. Science Advances, 2023, 9, .	4.7	9
147	Recent Advances on Direct Functionalization of Indoles in Aqueous Media. Chemical Record, 2023, 23, .	2.9	9
148	Green and efficient selective hydrogenation of furfural to furfuryl alcohol over hybrid CoOx/Nb2O5 nanocatalyst in water. Molecular Catalysis, 2023, 538, 112981.	1.0	3
149	Teaching water new tricks through boron coordination: Applications to green and sustainable synthesis. Current Opinion in Green and Sustainable Chemistry, 2023, 40, 100776.	3.2	0
150	Photoredox-Catalyzed and Silane-Mediated Hydrofluoromethylation of Unactivated Alkenes with Fluoroiodomethane in Water. Organic Letters, 2023, 25, 1035-1039.	2.4	5
151	Efficacy of Binary Media and Gold Catalyst for the Synthesis of a Conjugates with Cyclohexyl-Tetrazole-Alkyloxyphenyl-Benzenamine through Ugi 4-CC Reactions: Cytotoxic and Single-Crystal Studies. Polycyclic Aromatic Compounds, 2024, 44, 403-417.	1.4	1
152	Selectivity in micellar catalysed reactions: The role of interfacial dipole, compartmentalisation, and specific interactions with the surfactants. Current Opinion in Colloid and Interface Science, 2023, 64, 101681.	3.4	6
153	A New and an Ecoâ€Friendly Approach for the Construction of Multiâ€Functionalized Benzenes with Computational Studies. Chemistry and Biodiversity, 2023, 20, .	1.0	4
154	Ruâ^'Ni Alloy Nanoparticles Loaded on Nâ€Doped Amphiphilic Mesoporous Hollow Carbon@silica Spheres as Catalyst for the Hydrogenation of αâ€Pinene to <i>cis</i> â€Pinane. ChemPlusChem, 2023, 88, .	1.3	0
155	Water–SDS–[BMIm]Br composite system for one-pot multicomponent synthesis of pyrano[2,3- <i>c</i>)pyrazole derivatives and their structural assessment by NMR, X-ray, and DFT studies. RSC Advances, 2023, 13, 6747-6759.	1.7	3
156	Direct formation of amide/peptide bonds from carboxylic acids: no traditional coupling reagents, 1-pot, and green. Chemical Science, 2023, 14, 3462-3469.	3.7	10
157	Facilitating [2+2] Photocycloadditions by Promoting Oxygen Tolerance and Substrate Activation in Water. Chemistry - A European Journal, 2023, 29, .	1.7	5
158	Metal-Free Synthesis of Guanidines from Thioureas in Water Reactions Mediated by Visible Light. Synthesis, 2023, 55, 2166-2176.	1.2	2
159	A study of [2 + 2] cycloaddition–retroelectrocyclization in water: observation of substrate-driven transient-nanoreactor-induced new reactivity. Organic and Biomolecular Chemistry, 2023, 21, 2922-2929.	1.5	3
160	Catalystâ€∤Additiveâ€Free Oneâ€Pot Synthesis of Oxazolidines in Water via Regioselective and Stereoselective Câ°'H Functionalization Approach. ChemistrySelect, 2023, 8, .	0.7	0
161	An expeditious on-water regioselective synthesis of novel arylidene-hydrazinyl-thiazoles as DNA targeting agents. Bioorganic Chemistry, 2023, 136, 106524.	2.0	2
162	Dynamic bioorthogonal imaging using a tetrazine NIR-AZA fluorogenic probe. Tetrahedron, 2023, , 133387.	1.0	0
163	Hydrogen Isotope Exchange by Homogeneous Iridium Catalysis in Aqueous Buffers with Deuterium or Tritium Gas. Angewandte Chemie, 2023, 135, .	1.6	0

#	Article	IF	CITATIONS
164	Water mediated pot, atom, and step economic (PASE) synthesis of pyrimido [4,5- <i>d</i>) pyrimidines using ultrasound and microwave irradiation approaches. Synthetic Communications, 2023, 53, 823-834.	1.1	2
165	Gate to a parallel universe: utilization of biosurfactants in micellar catalysis. Green Chemistry, 2023, 25, 3462-3468.	4.6	5
170	Aqueous mediated iodine catalyzed C–N coupling followed by C–C coupling towards 5 <i>H</i> -pyrazino[2,3- <i>b</i>]indoles. Chemical Communications, 2023, 59, 7771-7774.	2.2	0
194	TXPhos: a highly stable and efficient ligand designed for ppm level Pd-catalyzed Suzuki–Miyaura coupling in water. Green Chemistry, 2023, 25, 6635-6641.	4.6	1
197	Classic <i>vs.</i> C–H functionalization strategies in the synthesis of APIs: a sustainability comparison. Green Chemistry, 2023, 25, 7916-7933.	4.6	2
232	KIO ₃ -catalyzed selective oxidation of thiols to disulfides in water under ambient conditions. Organic and Biomolecular Chemistry, 0, , .	1.5	0
238	Implementation of micelle-enabled C(sp ²)–C(sp ³) cross-electrophile coupling in pharmaceutical synthesis. Chemical Communications, 2024, 60, 2349-2352.	2.2	0
239	The emerging chemistry of self-electrified water interfaces. Chemical Society Reviews, 2024, 53, 2578-2602.	18.7	0
245	A tutorial review for research laboratories to support the vital path toward inherently sustainable and green synthetic chemistry., 2024, 2, 578-607.		0
247	Asymmetric Chemoenzymatic One-Pot Synthesis: Process Concepts & Decent Progress in Combining Chemo- & Decent Progress in Chemo- & Decent Pro		0