Homeostatic regulation of STING by retrograde membr

Nature Communications 12, 61 DOI: 10.1038/s41467-020-20234-9

Citation Report

#	Article	IF	CITATIONS
2	The STING phase-separator suppresses innate immune signalling. Nature Cell Biology, 2021, 23, 330-340.	4.6	96
4	STING Operation at the ER/Golgi Interface. Frontiers in Immunology, 2021, 12, 646304.	2.2	37
5	Colgi apparatus-synthesized sulfated glycosaminoglycans mediate polymerization and activation of the cGAMP sensor STING. Immunity, 2021, 54, 962-975.e8.	6.6	76
6	Augmentation of Stimulator of Interferon Genes–Induced Type I Interferon Production in COPA Syndrome. Arthritis and Rheumatology, 2021, 73, 2105-2115.	2.9	19
7	A cell-free assay implicates a role of sphingomyelin and cholesterol in STING phosphorylation. Scientific Reports, 2021, 11, 11996.	1.6	14
8	Surf4 facilitates reprogramming by activating the cellular response to endoplasmic reticulum stress. Cell Proliferation, 2021, 54, e13133.	2.4	5
9	Emerging Place of JAK Inhibitors in the Treatment of Inborn Errors of Immunity. Frontiers in Immunology, 2021, 12, 717388.	2.2	23
10	Coatomer protein COPÆ; a novel NS1-interacting protein, promotes the replication of Porcine Parvovirus via attenuation of the production of type I interferon. Veterinary Microbiology, 2021, 261, 109188.	0.8	6
11	No Longer A One-Trick Pony: STING Signaling Activity Beyond Interferon. Journal of Molecular Biology, 2022, 434, 167257.	2.0	13
12	The type I interferonopathies: 10 years on. Nature Reviews Immunology, 2022, 22, 471-483.	10.6	164
13	Loss of Hepatic Surf4 Depletes Lipid Droplets in the Adrenal Cortex but Does Not Impair Adrenal Hormone Production. Frontiers in Cardiovascular Medicine, 2021, 8, 764024.	1.1	5
14	A Novel Mutation c.841C>T in COPA Syndrome of an 11-Year-Old Boy: A Case Report and Short Literature Review. Frontiers in Pediatrics, 2021, 9, 773112.	0.9	7
15	Intervention of cGAS‒STING signaling in sterile inflammatory diseases. Journal of Molecular Cell Biology, 2022, 14, .	1.5	11
16	Allograft dysfunction after lung transplantation for COPA syndrome: A case report and literature review. Modern Rheumatology Case Reports, 2022, 6, 314-318.	0.3	4
17	Chemical and Biomolecular Strategies for STING Pathway Activation in Cancer Immunotherapy. Chemical Reviews, 2022, 122, 5977-6039.	23.0	92
18	Specific association of TBK1 with the trans-Golgi network following STING stimulation. Cell Structure and Function, 2022, 47, 19-30.	0.5	12
19	Emerging dimensions of cellular cGAS-STING signaling. Current Opinion in Immunology, 2022, 74, 164-171.	2.4	15
20	Organellar homeostasis and innate immune sensing. Nature Reviews Immunology, 2022, 22, 535-549.	10.6	49

TATION PEDO

#	Article	IF	CITATIONS
21	STING1 in Different Organelles: Location Dictates Function. Frontiers in Immunology, 2022, 13, 842489.	2.2	4
23	Crosstalk between RNA viruses and DNA sensors: Role of the cGASâ€STING signalling pathway. Reviews in Medical Virology, 2022, 32, e2343.	3.9	16
24	Management of a Novel Autoimmune Disease, COPA Syndrome, in Pregnancy. Case Reports in Obstetrics and Gynecology, 2022, 2022, 1-4.	0.2	1
25	Covax-19/Spikogen® vaccine based on recombinant spike protein extracellular domain with Advax-CpG55.2 adjuvant provides single dose protection against SARS-CoV-2 infection in hamsters. Vaccine, 2022, 40, 3182-3192.	1.7	25
26	Trapping of CDC42 C-terminal variants in the Golgi drives pyrin inflammasome hyperactivation. Journal of Experimental Medicine, 2022, 219, .	4.2	18
27	Deficiency in coatomer complex I causes aberrant activation of STING signalling. Nature Communications, 2022, 13, 2321.	5.8	43
28	Pathophysiological functions of self-derived DNA. International Reviews of Immunology, 2023, 42, 274-286.	1.5	1
29	UNC93B1 attenuates the cCAS–STING signaling pathway by targeting STING for autophagy–lysosome degradation. Journal of Medical Virology, 2022, 94, 4490-4501.	2.5	16
30	Dysregulation of the cGAS-STING Pathway in Monogenic Autoinflammation and Lupus. Frontiers in Immunology, 0, 13, .	2.2	10
32	Recent progress on the activation of the cGAS–STING pathway and its regulation by biomolecular condensation. Journal of Molecular Cell Biology, 2022, 14, .	1.5	5
33	Activation of STING Based on Its Structural Features. Frontiers in Immunology, 0, 13, .	2.2	13
34	The interaction between STING and NCOA4 exacerbates lethal sepsis by orchestrating ferroptosis and inflammatory responses in macrophages. Cell Death and Disease, 2022, 13, .	2.7	28
36	Cargo Receptor-Mediated ER Export in Lipoprotein Secretion and Lipid Homeostasis. Cold Spring Harbor Perspectives in Biology, 2023, 15, a041260.	2.3	4
37	Inhibitory targeting cGAS-STING-TBK1 axis: Emerging strategies for autoimmune diseases therapy. Frontiers in Immunology, 0, 13, .	2.2	6
38	Alternative pathways driven by STING: From innate immunity to lipid metabolism. Cytokine and Growth Factor Reviews, 2022, 68, 54-68.	3.2	4
39	The cCAS-STING pathway: Post-translational modifications and functional implications in diseases. Cytokine and Growth Factor Reviews, 2022, 68, 69-80.	3.2	5
40	MITA/STING-mediated antiviral immunity and autoimmunity: the evolution, mechanism, and intervention. Current Opinion in Immunology, 2022, 78, 102248.	2.4	6
41	Recent advances in the activation and regulation of the cCAS-STING pathway. Advances in Immunology, 2022, , 55-102.	1.1	7

CITATION REPORT

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
42	The activity of disease-causative STING variants can be suppressed by wild-type STING through heterocomplex formation. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	2
43	Novel endogenous endoplasmic reticulum transmembrane protein SURF4 suppresses cell death by negatively regulating the STINC‧TAT6 axis in myeloid leukemia. Cancer Communications, 2023, 43, 395-399.	3.7	3
44	Export of polybasic motif–containing secretory proteins BMP8A and SFRP1 from the endoplasmic reticulum is regulated by surfeit locus protein 4. Journal of Biological Chemistry, 2022, 298, 102687.	1.6	4
45	Interruption of post-Golgi STING trafficking activates tonic interferon signaling. Nature Communications, 2022, 13, .	5.8	14
46	STING Targeting in Lung Diseases. Cells, 2022, 11, 3483.	1.8	2
47	Surf4, cargo trafficking, lipid metabolism, and therapeutic implications. Journal of Molecular Cell Biology, 2023, 14, .	1.5	5
48	Cellular functions of cGAS-STING signaling. Trends in Cell Biology, 2023, 33, 630-648.	3.6	45
49	Multifaceted functions of STING in human health and disease: from molecular mechanism to targeted strategy. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	27
50	Structural insights into a shared mechanism of human STING activation by a potent agonist and an autoimmune disease-associated mutation. Cell Discovery, 2022, 8, .	3.1	13
51	Type-1 interferon-dependent and -independent mechanisms in cyclic GMP–AMP synthase–stimulator of interferon genes-driven auto-inflammation. Current Opinion in Immunology, 2023, 80, 102280.	2.4	6
52	STING trafficking as a new dimension of immune signaling. Journal of Experimental Medicine, 2023, 220, .	4.2	14
53	ARMH3-mediated recruitment of PI4KB directs Golgi-to-endosome trafficking and activation of the antiviral effector STING. Immunity, 2023, 56, 500-515.e6.	6.6	17
54	A non-nucleotide agonist that binds covalently to cysteine residues of STING. Cell Structure and Function, 2023, 48, 59-70.	0.5	0
55	ESCRT-dependent STING degradation inhibits steady-state and cGAMP-induced signalling. Nature Communications, 2023, 14, .	5.8	25
56	A path towards personalized medicine for autoinflammatory and related diseases. Nature Reviews Rheumatology, 2023, 19, 182-189.	3.5	5
57	Human skin specific long noncoding RNA HOXC13-AS regulates epidermal differentiation by interfering with Golgi-ER retrograde transport. Cell Death and Differentiation, 2023, 30, 1334-1348.	5.0	2
58	STING signalling is terminated through ESCRT-dependent microautophagy of vesicles originating from recycling endosomes. Nature Cell Biology, 2023, 25, 453-466.	4.6	40
59	Pathophysiological Roles of the cGAS-STING Inflammatory Pathway. Physiology, 2023, 38, 167-177.	1.6	3

	CITAI	CITATION REPORT	
#	Article	IF	CITATIONS
60	The mechanism of STING autoinhibition and activation. Molecular Cell, 2023, 83, 1502-1518.e10.	4.5	16
61	Impact of interorganelle coordination between the conventional early secretory pathway and autophagy in cellular homeostasis and stress response. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	0
80	Autoinflammatory Diseases Due to Defects in Degradation orÂTransport of Intracellular Proteins. Advances in Experimental Medicine and Biology, 2024, , 83-95.	0.8	0