Recent progress in non-native nucleic acid modification

Chemical Society Reviews 50, 5126-5164 DOI: 10.1039/d0cs01430c

Citation Report

#	Article	IF	CITATIONS
1	Inhibition of off-target cleavage by RNase H using an artificial cationic oligosaccharide. Organic and Biomolecular Chemistry, 2021, 19, 6865-6870.	2.8	3
2	Double-headed nucleic acids condense the molecular information of DNA to half the number of nucleotides. Chemical Communications, 2021, 57, 9128-9131.	4.1	3
3	Enzymatic construction of metal-mediated nucleic acid base pairs. Metallomics, 2021, 13, .	2.4	12
4	2′-Fluoro-arabinonucleic Acid (FANA): A Versatile Tool for Probing Biomolecular Interactions. Accounts of Chemical Research, 2021, 54, 2287-2297.	15.6	27
5	Double-headed nucleosides: Synthesis and applications. Beilstein Journal of Organic Chemistry, 2021, 17, 1392-1439.	2.2	6
6	Oligonucleotide Phosphorothioates Enter Cells by Thiolâ€Mediated Uptake. Angewandte Chemie - International Edition, 2021, 60, 19102-19106.	13.8	44
7	Integration of chemically modified nucleotides with <scp>DNA</scp> strand displacement reactions for applications in living systems. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1743.	6.1	7
8	Oligonucleotide Phosphorothioates Enter Cells by Thiolâ€Mediated Uptake. Angewandte Chemie, 2021, 133, 19250-19254.	2.0	5
9	A molecular hybrid comprising AS1411 and PDGFâ€BB aptamer, cholesterol, and doxorubicin for inhibiting proliferation of SW480 cells. Journal of Molecular Recognition, 2021, 34, e2926.	2.1	2
10	Influence of 5-Methylation and the 2′- and 3′-Hydroxy Substituents on the Base Pairing Energies of Protonated Cytidine Nucleoside Analogue Base Pairs: Implications for the Stabilities of <i>i</i> -Motif Structures. Journal of Physical Chemistry A, 2021, 125, 5939-5955.	2.5	8
11	Towards the enzymatic synthesis of phosphorothioate containing LNA oligonucleotides. Bioorganic and Medicinal Chemistry Letters, 2021, 48, 128242.	2.2	15
12	Non-Canonical Helical Structure of Nucleic Acids Containing Base-Modified Nucleotides. International Journal of Molecular Sciences, 2021, 22, 9552.	4.1	9
13	Frontiers in Gâ€Quadruplex therapeutics in cancer: Selection of small molecules, peptides and aptamers. Chemical Biology and Drug Design, 2022, 99, 1-31.	3.2	10
14	Uptake mechanisms of cell-internalizing nucleic acid aptamers for applications as pharmacological agents. RSC Medicinal Chemistry, 2021, 12, 1640-1649.	3.9	8
15	Therapeutic reversal of Huntington's disease by <i>in vivo</i> self-assembled siRNAs. Brain, 2021, 144, 3421-3435.	7.6	36
16	Convertible and Constrained Nucleotides: The 2'-Deoxyribose 5'-C-Functionalization Approach, a French Touch. Molecules, 2021, 26, 5925.	3.8	1
17	Direct Access to Unique Câ€5'â€Acyl Modified Nucleosides through Liebeskind–Srogl Cross oupling Reaction. European Journal of Organic Chemistry, 2022, 2022, .	2.4	3
18	Silver(I)-mediated base pairing involving an <i>S</i> -glycosidic GNA nucleoside analogue. Nucleosides, Nucleotides and Nucleic Acids, 2022, 41, 23-35.	1.1	4

$\mathcal{O} = \mathcal{O}$	I	REPORT
		ZEDUDT
CITAT		UFORT

#	Article	IF	CITATIONS
19	Fast and Efficient Postsynthetic DNA Labeling in Cells by Means of Strainâ€Promoted Sydnoneâ€Alkyne Cycloadditions. Chemistry - A European Journal, 2021, 27, 16093-16097.	3.3	9
20	Functional nucleic acid-based cell imaging and manipulation. Science China Chemistry, 2021, 64, 1817-1825.	8.2	13
21	Non-standard and higher-order DNA structures: DNA–DNA recognition. , 2022, , 109-190.		1
22	A ruthenium–oligonucleotide bioconjugated photosensitizing aptamer for cancer cell specific photodynamic therapy. RSC Chemical Biology, 2022, 3, 85-95.	4.1	14
23	Doubleâ€Headed Nucleotides with Increased Baseâ€Pairing Affinity and Specificity. European Journal of Organic Chemistry, 0, , .	2.4	0
24	Chemical methods and advanced sequencing technologies for deciphering mRNA modifications. Chemical Society Reviews, 2021, 50, 13481-13497.	38.1	15
25	Oligonucleotides containing 2′-O-methyl-5-(1-phenyl-1,2,3-triazol-4-yl)uridines demonstrate increased affinity for RNA and induce exon-skipping in vitro. Bioorganic and Medicinal Chemistry, 2022, 55, 116559.	3.0	2
26	Nanoscale probing and imaging of HIV-1 RNA in cells with a chimeric LNA–DNA sensor. Nanoscale, 2022, , .	5.6	0
27	Selection of M ²⁺ â€Independent RNAâ€Cleaving DNAzymes with Sideâ€Chains Mimicking Arginine and Lysine. ChemBioChem, 2022, 23, .	2.6	8
28	Drug delivery systems for RNA therapeutics. Nature Reviews Genetics, 2022, 23, 265-280.	16.3	417
29	Smart Strategies for Precise Delivery of CRISPR/Cas9 in Genome Editing. ACS Applied Bio Materials, 2022, 5, 413-437.	4.6	6
30	DNA Nanotweezers for Biosensing Applications: Recent Advances and Future Prospects. ACS Sensors, 2022, 7, 3-20.	7.8	14
31	Chemical and chemoenzymatic stereoselective synthesis of β-nucleosides and their analogues. Organic Chemistry Frontiers, 2022, 9, 1719-1741.	4.5	8
32	Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment. Biotechnology Advances, 2022, 55, 107902.	11.7	67
33	Nucleoside Analogues with a Seven-Membered Sugar Ring: Synthesis and Structural Compatibility in DNA–RNA Hybrids. Journal of Organic Chemistry, 2022, 87, 2367-2379.	3.2	7
34	Nucleic Acids and Their Analogues for Biomedical Applications. Biosensors, 2022, 12, 93.	4.7	26
35	Towards polymerase-mediated synthesis of artificial RNA–DNA metal base pairs. New Journal of Chemistry, 2022, 46, 4871-4876.	2.8	5
36	Metal-mediated DNA base pairing of easily prepared 2-oxo-imidazole-4-carboxylate nucleotides. Chemical Science, 2022, 13, 3977-3983.	7.4	13

#	Article	IF	CITATIONS
37	Enzymatic DNA Synthesis by Engineering Terminal Deoxynucleotidyl Transferase. ACS Catalysis, 2022, 12, 2988-2997.	11.2	24
38	Nucleosides and emerging viruses: A new story. Drug Discovery Today, 2022, 27, 1945-1953.	6.4	15
39	Programmable manipulation of oligonucleotide–albumin interaction for elongated circulation time. Nucleic Acids Research, 2022, 50, 3083-3095.	14.5	14
40	In vivo assembly and expression of DNA containing nonâ€canonical bases in the yeast Saccharomyces cerevisiae. ChemBioChem, 2022, , .	2.6	4
41	Double-Headed 2′-Deoxynucleotides That Hybridize to DNA and RNA Targets via Normal and Reverse Watson–Crick Base Pairs. Journal of Organic Chemistry, 2022, 87, 5113-5124.	3.2	0
42	Niâ€Catalyzed Crossâ€Coupling of 2″odoglycals and 2″odoribals with Grignard Reagents: A Route to 2― <i>C</i> â€Glycosides and 2'― <i>C</i> â€Nucleosides. Chemistry - A European Journal, 2022, , .	3.3	8
43	The multifaceted roles of mass spectrometric analysis in nucleic acids drug discovery and development. Mass Spectrometry Reviews, 2023, 42, 1332-1357.	5.4	4
44	Advances in Therapeutic L-Nucleosides and L-Nucleic Acids with Unusual Handedness. Genes, 2022, 13, 46.	2.4	6
45	Advancements in the characterisation of oligonucleotides by high performance liquid chromatographyâ€mass spectrometry in 2021: A short review. Analytical Science Advances, 2022, 3, 90-102.	2.8	8
46	Chemical Modifications for a Next Generation of Nucleic Acid Aptamers. ChemBioChem, 2022, 23, .	2.6	20
47	Synthesis of Heterocycles and Nucleosides Forming Higher—Order Structures. , 2021, 8, .		0
48	The use of high-affinity polyhistidine binders as masking probes for the selection of an NDM-1 specific aptamer. Scientific Reports, 2022, 12, 7936.	3.3	3
49	Covalently attached intercalators restore duplex stability and splice-switching activity to triazole-modified oligonucleotides. RSC Chemical Biology, 0, , .	4.1	3
50	Cellular uptake, tissue penetration, biodistribution, and biosafety of threose nucleic acids: Assessing in vitro and in vivo delivery. Materials Today Bio, 2022, 15, 100299.	5.5	3
51	Strategies for the Synthesis of Fluorinated Nucleosides, Nucleotides and Oligonucleotides. Chemical Record, 2022, 22, .	5.8	8
52	Evaluation of 3′-phosphate as a transient protecting group for controlled enzymatic synthesis of DNA and XNA oligonucleotides. Communications Chemistry, 2022, 5, .	4.5	15
53	Combating small molecule environmental contaminants: detection and sequestration using functional nucleic acids. Chemical Science, 2022, 13, 7670-7684.	7.4	7
54	Microenvironment-Sensitive Fluorescent Nucleotide Probes from Benzofuran, Benzothiophene, and Selenophene as Substrates for DNA Polymerases. Journal of the American Chemical Society, 2022, 144, 10556-10569.	13.7	11

#	Article	IF	CITATIONS
55	Electronic Coupling in 1,2,3-Triazole Bridged Ferrocenes and Its Impact on Reactive Oxygen Species Generation and Deleterious Activity in Cancer Cells. Inorganic Chemistry, 2022, 61, 9650-9666.	4.0	9
56	Isolation and Characterization of Engineered Nucleoside Deoxyribosyltransferase with Enhanced Activity toward 2'-Fluoro-2'-Deoxynucleoside. Journal of Microbiology and Biotechnology, 2022, , .	2.1	0
58	Second Generation Synthesis of Modified Dinucleotide Analogues Featuring a Difluorophosphin(othio)yl Linkage. European Journal of Organic Chemistry, 2022, 2022, .	2.4	1
59	A modular XNAzyme cleaves long, structured RNAs under physiological conditions and enables allele-specific gene silencing. Nature Chemistry, 2022, 14, 1295-1305.	13.6	27
60	From polymerase engineering to semi-synthetic life: artificial expansion of the central dogma. RSC Chemical Biology, 2022, 3, 1173-1197.	4.1	6
61	Quick Access to Nucleobase-Modified Phosphoramidites for the Synthesis of Oligoribonucleotides Containing Post-Transcriptional Modifications and Epitranscriptomic Marks. Journal of Organic Chemistry, 2022, 87, 10333-10348.	3.2	2
62	The Medicinal Chemistry of Artificial Nucleic Acids and Therapeutic Oligonucleotides. Pharmaceuticals, 2022, 15, 909.	3.8	15
63	An ELISA-based platform for rapid identification of structure-dependent nucleic acid–protein interactions detects novel DNA triplex interactors. Journal of Biological Chemistry, 2022, 298, 102398.	3.4	1
64	Synthesis of a Peptidoyl RNA Hairpin via a Combination of Solidâ€Phase and Templateâ€Đirected Chain Assembly. ChemBioChem, 0, , .	2.6	1
65	Influence of 5-Halogenation on the Base-Pairing Energies of Protonated Cytidine Nucleoside Analogue Base Pairs: Implications for the Stabilities of Synthetic <i>i</i> Motif Structures for DNA Nanotechnology Applications. Journal of the American Society for Mass Spectrometry, 0, , .	2.8	1
66	Benzoyl and Pivaloyl as Efficient Protecting Groups for Controlled Enzymatic Synthesis of DNA and XNA Oligonucleotides. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	8
67	Synthesis and physical and biological properties of 1,3-diaza-2-oxophenoxazine-conjugated oligonucleotides. Bioorganic and Medicinal Chemistry, 2022, 72, 116972.	3.0	3
68	Resolving Ultrafast Photoinitiated Dynamics of the Hachimoji <scp>5â€azaâ€7â€deazaguanine</scp> Nucleobase: Impact of Synthetically Expanding the Genetic Alphabet ^{â€} . Photochemistry and Photobiology, 2023, 99, 693-705.	2.5	2
69	Efficient synthesis and replication of diverse sequence libraries composed of biostable nucleic acid analogues. RSC Chemical Biology, 2022, 3, 1209-1215.	4.1	8
70	Ferrocene as a potential electrochemical reporting surrogate of abasic sites in DNA. Organic and Biomolecular Chemistry, 2022, 20, 8125-8135.	2.8	4
72	Base Modifications of Nucleosides <i>via</i> the Use of Peptide oupling Agents, and Beyond. Chemical Record, 2023, 23, .	5.8	2
73	Synthesis, Duplex-Forming Ability, and Nuclease Resistance of Oligonucleotides Containing a Thymidine Derivative with a 1-Oxaspiro[4.5]decane Skeleton. Chemical and Pharmaceutical Bulletin, 2022, 70, 699-706.	1.3	0
74	Insertion of a methylene group into the backbone of an antisense oligonucleotide reveals the importance of deoxyribose recognition by RNase H. Organic and Biomolecular Chemistry, 2022, 20, 8917-8924	2.8	1

#	Article	IF	CITATIONS
75	Aptamers: A prospective tool for infectious diseases diagnosis. Journal of Clinical Laboratory Analysis, 2022, 36, .	2.1	4
76	Selective RNA Labeling by RNA-Compatible Type II Restriction Endonuclease and RNA-Extending DNA Polymerase. Life, 2022, 12, 1674.	2.4	0
77	Industrial potential of the enzymatic synthesis of nucleoside analogs: existing challenges and perspectives. Current Opinion in Biotechnology, 2022, 78, 102829.	6.6	6
78	4′-Fluoro-nucleosides and nucleotides: from nucleocidin to an emerging class of therapeutics. Chemical Society Reviews, 2023, 52, 248-276.	38.1	10
79	Two-in-one combination therapy of fluoronucleoside analogues and triplex forming oligonucleotides. Nano Today, 2023, 48, 101699.	11.9	1
80	Cu ^{II} -mediated stabilisation of DNA duplexes bearing consecutive ethenoadenine lesions and its application to a metal-responsive DNAzyme. Chemical Communications, 2023, 59, 1006-1009.	4.1	13
81	Biocatalytic Synthesis of Antiviral Nucleosides, Cyclic Dinucleotides, and Oligonucleotide Therapies. Jacs Au, 2023, 3, 13-24.	7.9	14
82	Synthesis of Aminotroponylâ€∤Difluoroboronyl Aminotroponyl Deoxyuridine Phosphoramidites. Current Protocols, 2022, 2, .	2.9	0
83	Oligonucleotide–Chemosensor Conjugate as a Dual Responsive Detection Platform and Its Application for Simultaneous Detection of ATP and Zn ²⁺ . ACS Sensors, 2022, 7, 3933-3939.	7.8	1
84	Enzymatic Synthesis of Vancomycin-Modified DNA. Molecules, 2022, 27, 8927.	3.8	7
85	Success probability of high-affinity DNA aptamer generation by genetic alphabet expansion. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	4.0	6
86	Constructing Artificial Nucleobase Compilation to Enable Precise Molecular Medicine ^{â€} . Chinese Journal of Chemistry, 2023, 41, 1385-1398.	4.9	2
87	Enzymatic Synthesis of Base-Modified Nucleic Acids. , 2023, , 1-39.		0
88	Fieldâ€Effect Transistorâ€Based Biosensor for pH Sensing and Mapping. , 2023, 2, .		2
89	In situ enzymatic template replication on DNA microarrays. Methods, 2023, 213, 33-41.	3.8	0
90	Determining RNA Natural Modifications and Nucleoside Analog-Labeled Sites by a Chemical/Enzyme-Induced Base Mutation Principle. Molecules, 2023, 28, 1517.	3.8	3
91	Chemically modified aptamers for improving binding affinity to the target proteins via enhanced non-covalent bonding. Frontiers in Cell and Developmental Biology, 0, 11, .	3.7	8
92	Taphonomical Security: DNA Information withÂaÂForeseeable Lifespan. Lecture Notes in Networks and Systems, 2023, , 674-694.	0.7	0

	CITATION	Report	
#	Article	IF	CITATIONS
93	The Effects of FANA Modifications on Non-canonical Nucleic Acid Structures. , 2022, , 1-37.		0
94	Derivatization of Mirrorâ€Image <scp>l</scp> â€Nucleic Acids with 2′â€OMe Modification for Thermal and Structural Stabilization. ChemBioChem, 2023, 24, .	2.6	1
95	Recycling of Polymerase Chain Reaction (PCR) Kits. ACS Sustainable Chemistry and Engineering, 2023, 11, 5524-5536.	6.7	3
96	Nucleic acid sensors in vivo: challenges and opportunities. View, 2023, 4, .	5.3	5
97	Enhancing the Effectiveness of Oligonucleotide Therapeutics Using Cell-Penetrating Peptide Conjugation, Chemical Modification, and Carrier-Based Delivery Strategies. Pharmaceutics, 2023, 15, 1130.	4.5	11
98	A Connected World: System-Level Support Through Biosensors. Annual Review of Analytical Chemistry, 2023, 16, .	5.4	0
99	Nanotechnology Lighting the Way for Gene Therapy in Ophthalmopathy: From Opportunities toward Applications. Molecules, 2023, 28, 3500.	3.8	1
100	Towards the controlled enzymatic synthesis of LNA containing oligonucleotides. Frontiers in Chemistry, 0, 11, .	3.6	6
101	Nucleic Acid Therapeutics. , 2022, , 350-402.		0
102	Di-valent siRNA-mediated silencing of MSH3 blocks somatic repeat expansion in mouse models of Huntington's disease. Molecular Therapy, 2023, 31, 1661-1674.	8.2	10
103	Entropy-driven conformational transition of flexible Z-DNA to a novel non-B helix by double-methylated guanosine. Journal of Molecular Liquids, 2023, 383, 122071.	4.9	0
104	Simple and cheap CRISPR/Cas12a biosensor based on plug-and-play of DNA aptamers for the detection of endocrine-disrupting compounds. Talanta, 2023, 263, 124761.	5.5	0
105	Aptamer and its selection via various SELEX strategies. , 2023, , 29-64.		0
106	CO enhances agomir transfection under pathological conditions to inhibit MMP overexpression. Nano Today, 2023, 51, 101898.	11.9	2
107	An enzyme cascade enables production of therapeutic oligonucleotides in a single operation. Science, 2023, 380, 1150-1154.	12.6	6
108	Bottlebrush DNA-Primed Rolling Circle Amplification for Sensitive Detection of Biomolecules. ACS Applied Nano Materials, 0, , .	5.0	0
109	A guide for the synthesis of key nucleoside scaffolds in drug discovery. Medicinal Chemistry Research, 2023, 32, 1315-1333.	2.4	3
110	Polyplex designs for improving the stability and safety of RNA therapeutics. Advanced Drug Delivery Reviews, 2023, 199, 114972.	13.7	6

	CITATION RE	PORT	
#	Article	IF	Citations
111	Phosphorothioated DNA Engineered Liposomes as a General Platform for Stimuliâ€Responsive Cellâ€Specific Intracellular Delivery and Genome Editing. Angewandte Chemie, 2023, 135, .	2.0	0
112	Phosphorothioated DNA Engineered Liposomes as a General Platform for Stimuliâ€Responsive Cellâ€Specific Intracellular Delivery and Genome Editing. Angewandte Chemie - International Edition, 2023, 62, .	13.8	9
113	Highly Parallelized Screening of Functionally Enhanced XNA Aptamers in Uniform Hydrogel Particles. ACS Synthetic Biology, 2023, 12, 2127-2134.	3.8	3
114	MicroRNA therapeutics and Nucleic Acid Nano-Delivery Systems in Bacterial Infection: a review. Journal of Materials Chemistry B, 0, , .	5.8	0
115	The Effects of FANA Modifications on Non-canonical Nucleic Acid Structures. , 2023, , 435-471.		0
116	Modulation of the tetrameric I-motif folding of C-rich Tetrahymena telomeric sequences by hexitol nucleic acid (HNA) modifications. Biochimie, 2023, , .	2.6	1
117	Recognition of an Unnatural Base Pair by Tool Enzymes from Bacteriophages and Its Application in the Enzymatic Preparation of DNA with an Expanded Genetic Alphabet. ACS Synthetic Biology, 0, , .	3.8	1
118	Chemical Amplification-Enabled Topological Modification of Nucleic Acid Aptamers for Enhanced Cancer-Targeted Theranostics. ACS Nano, 0, , .	14.6	1
119	Selection of optimised ligands by fluorescence-activated bead sorting. Chemical Science, 2023, 14, 9517-9525.	7.4	1
120	Bioengineered chimeric <scp>tRNA</scp> / <scp>preâ€miRNAs</scp> as prodrugs in cancer therapy. Biotechnology Progress, 2023, 39, .	2.6	0
121	Non-Covalent Interactions between dUTP C5-Substituents and DNA Polymerase Decrease PCR Efficiency. International Journal of Molecular Sciences, 2023, 24, 13643.	4.1	0
122	Synthesis and chemical transformations of glycol nucleic acid (GNA) nucleosides. Bioorganic Chemistry, 2023, 141, 106921.	4.1	1
123	Stability and mechanism of threose nucleic acid toward acid-mediated degradation. Nucleic Acids Research, 2023, 51, 9542-9551.	14.5	4
124	Engineering siRNA therapeutics: challenges and strategies. Journal of Nanobiotechnology, 2023, 21, .	9.1	6
125	Pursuing excitonic energy transfer with programmable DNA-based optical breadboards. Chemical Society Reviews, 2023, 52, 7848-7948.	38.1	5
126	Alternative Synthesis of α-l-Threofuranosyl Guanosine 3â \in ²-triphosphate. Synlett, 0, , .	1.8	0
127	Arylethynyl- or Alkynyl-Linked Pyrimidine and 7-Deazapurine 2′-Deoxyribonucleoside 3′-Phosphoramidites for Chemical Synthesis of Hypermodified Hydrophobic Oligonucleotides. ACS Omega, 2023, 8, 39447-39453.	3.5	0
128	Interrogating Aptamer Chemical Space Through Modified Nucleotide Substitution Facilitated by Enzymatic DNA Synthesis. ChemBioChem, 2024, 25, .	2.6	0

#	Article	IF	Citations
129	Superanionic DNA: enzymatic synthesis of hypermodified DNA bearing four different anionic substituents at all four nucleobases. Nucleic Acids Research, 2023, 51, 11428-11438.	14.5	2
130	Synthesis of tertiary alkylphosphonate oligonucleotides through light-driven radical-polar crossover reactions. Nature Communications, 2023, 14, .	12.8	2
131	Impact of the Core Chemistry of Selfâ€Assembled Spherical Nucleic Acids on their <i>In Vitro</i> Fate. Angewandte Chemie, 2023, 135, .	2.0	0
132	Impact of the Core Chemistry of Selfâ€Assembled Spherical Nucleic Acids on their <i>In Vitro</i> Fate. Angewandte Chemie - International Edition, 2023, 62, .	13.8	0
133	Expedient synthesis of l-heptose derived septacidin building blocks from l-glucose. Carbohydrate Research, 2023, 534, 108985.	2.3	0
134	Nucleic acid degradation as barrier to gene delivery: a guide to understand and overcome nuclease activity. Chemical Society Reviews, 2024, 53, 317-360.	38.1	2
135	An Acid-Free Deprotection of 5′-Amino-Modified Oligonucleotides. Organic Process Research and Development, 2023, 27, 2160-2164.	2.7	0
136	Facilitated synthetic access to boronic acid-modified nucleoside triphosphates and compatibility with enzymatic DNA synthesis. Synlett, 0, , .	1.8	0
137	Challenges of Assessing Exon 53 Skipping of the Human <i>DMD</i> Transcript with Locked Nucleic Acid-Modified Antisense Oligonucleotides in a Mouse Model for Duchenne Muscular Dystrophy. Nucleic Acid Therapeutics, 2023, 33, 348-360.	3.6	0
138	Amplification of an Electrochemiluminescence-Emissive Aptamer into DNA Nanotags for Sensitive Fecal Calprotectin Determination. Analytical Chemistry, 0, , .	6.5	0
139	Synthesis, Duplex-Forming Ability, and Enzymatic Stability of Oligonucleotides Modified with Amide-Linked Dinucleotides Containing a 3′,4′-Tetrahydropyran-Bridged Nucleic Acid. Journal of Organic Chemistry, 0, , .	3.2	0
140	Smart DNA sensorsâ€based molecular identification for cancer subtyping. , 2023, 1, .		0
141	Enhancing or Quenching of a Mitochondria-Targeted AlEgens-Floxuridine Sensor by the Regulation of pH-Dependent Self-assembly, Efficient Recognition of Hg ²⁺ , and Stimulated Response of GSH. Analytical Chemistry, 0, , .	6.5	0
142	Identification of glycosylated nucleosides in small synthetic glycoâ€RNAs. ChemBioChem, 2024, 25, .	2.6	1
143	Aqueous Activation of RNA 2â \in 2-OH for Conjugation with Amines and Thiols. Bioconjugate Chemistry, 0, , .	3.6	0
145	Chemically Modified Platforms for Better RNA Therapeutics. Chemical Reviews, 2024, 124, 929-1033.	47.7	1
146	Boronic Acid-Catalyzed Regio- and Stereoselective <i>N</i> -Glycosylations of Purines and Other Azole Heterocycles: Access to Nucleoside Analogues. Journal of the American Chemical Society, 2024, 146, 4973-4984.	13.7	0
147	Organometallic modification confers oligonucleotides new functionalities. Chemical Communications, 2024, 60, 3118-3128.	4.1	0

#	Article	IF	CITATIONS
148	Ligand-Enabled Copper-Catalyzed N6-Arylation of 2′-deoxyadenosine and its analogues. Tetrahedron Letters, 2024, 138, 154983.	1.4	0
149	Chemically Cross-Linked Hammerhead Ribozyme as an Efficient RNA Interference Tool. Journal of the American Chemical Society, 2024, 146, 6665-6674.	13.7	0
150	Chemoenzymatic Installation of Site-Specific Chemical Groups on DNA Enhances the Catalytic Activity. Journal of the American Chemical Society, 2024, 146, 7052-7062.	13.7	0
151	Programming crystallization kinetics of self-assembled DNA crystals with 5-methylcytosine modification. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121, .	7.1	0
152	Expanding the Horizon of the Xeno Nucleic Acid Space: Threose Nucleic Acids with Increased Information Storage. Journal of the American Chemical Society, 2024, 146, 7743-7751.	13.7	0
153	Direct Synthesis of \hat{I}_{\pm} - and \hat{I}^2 - $2\hat{a}\in$ ² -Deoxynucleosides with Stereodirecting Phosphine Oxide via Remote Participation. Journal of the American Chemical Society, 2024, 146, 8768-8779.	13.7	0
154	Recent Progress in Nucleic Acid Pulmonary Delivery toward Overcoming Physiological Barriers and Improving Transfection Efficiency. Advanced Science, 0, , .	11.2	0
155	Late-stage guanine C8–H alkylation of nucleosides, nucleotides, and oligonucleotides via	12.8	Ο