Separation of Food Colorings via Liquid–Liquid Extra Lab

Journal of Chemical Education 98, 951-957

DOI: 10.1021/acs.jchemed.0c01286

Citation Report

#	Article	IF	CITATIONS
1	At-Home Titration: Magnesium Hydroxide in Milk of Magnesia Using an Inexpensive Digital Balance and Natural Food Dye as Indicators. Journal of Chemical Education, 2021, 98, 2592-2595.	2.3	7
2	LAB Theory, HLAB Pedagogy, and Review of Laboratory Learning in Chemistry during the COVID-19 Pandemic. Journal of Chemical Education, 2021, 98, 2496-2517.	2.3	54
3	Student Satisfaction with Synchronous Online Organic Chemistry Laboratories: Prerecorded Video vs Livestream. Journal of Chemical Education, 2021, 98, 2861-2869.	2.3	14
4	Designing a Remote, Synchronous, Hands-On General Chemistry Lab Course. Journal of Chemical Education, 2021, 98, 3131-3142.	2.3	10
5	Three-Part Approach to Remote/Residential Organic Chemistry Lab During the COVID-19 Pandemic. Journal of Chemical Education, 2021, 98, 3898-3903.	2.3	5
6	Student Discovery of the Relationship between Molecular Structure, Solubility, and Intermolecular Forces. Journal of Chemical Education, 2021, 98, 4046-4053.	2.3	7
7	Reassessing Undergraduate Polymer Chemistry Laboratory Experiments for Virtual Learning Environments. Journal of Chemical Education, 2022, 99, 1877-1889.	2.3	11
8	Introducing Video-Recorded Lab Experiments into Assignments for Surface and Colloid Chemistry Students. Journal of Chemical Education, 2022, 99, 2154-2159.	2.3	3
9	Design and Evaluation of the BeArS@home and Slugs@home Choose-Your-Own-Adventure-Style Online Laboratory Experiments. Journal of Chemical Education, 2022, 99, 2351-2363.	2.3	5
10	Review of Hands-On Laboratory Experiments Employing Household Supplies. Journal of Chemical Education, 2022, 99, 2563-2571.	2.3	6
11	A Colorful Solvent Extraction Demonstration for Teaching the Concept of "Like Dissolves Like― Journal of Chemical Education, 2022, 99, 3342-3345.	2.3	0
12	A Stay-at-Home Chemistry Activity to Illustrate Intermolecular Forces. Journal of Chemical Education, 2022, 99, 3310-3314.	2.3	1
13	Teaching Performance of Chemistry Teachers in Chinese Mainland during the COVID-19 Pandemic: A Content Analysis Study. Journal of Chemical Education, 2023, 100, 1466-1475.	2.3	3
14	Homemade Educational Videos for Learning General Chemistry Experiments: A Pedagogical Alternative for Remote Teaching. Journal of Chemical Education, 2023, 100, 2956-2964.	2.3	1
15	Design and Conduct of Lab@Home Chemistry Experiment: The Effect of Strong Acid and Base on Buffered and Unbuffered Systems. Journal of Chemical Education, 2023, 100, 2992-2998.	2.3	0
16	A safe-at-home benzoin condensation from imitation almond extract. Chemistry Teacher International, 2023, 5, 275-282.	1.7	О
17	Using Indicators as Impurities to Monitor the Washing Process in the Organic Chemistry Laboratory. Journal of Chemical Education, 2023, 100, 4796-4802.	2.3	0
18	A Simple and Colorful Experiment to Show Nanowire Membrane Construction for Molecule Separation. Journal of Chemical Education, 2024, 101, 1146-1153.	2.3	О

ARTICLE IF CITATIONS

19 The Role of Sargahydroquinoic Acid and Sargachromenol in the Anti-Inflammatory Effect of Sargassum yezoense. Marine Drugs, 2024, 22, 107.

4.6 0