

IEEE Transactions on Green Communications and Networking 5, 1918-1933

DOI: 10.1109/tgcn.2021.3104801

Citation Report

#	Article	IF	CITATIONS
1	UAV-Based Crowd Surveillance in Post COVID-19 Era. IEEE Access, 2021, 9, 162276-162290.	4.2	10
2	Multi-Constrained and Edge-Enabled Selection of UAV Participants in Federated Learning Process. Electronics (Switzerland), 2022, 11, 2119.	3.1	7
3	Joint Trajectory and Pick-Up Design for UAV-Assisted Item Delivery Under No-Fly Zone Constraints. IEEE Transactions on Vehicular Technology, 2023, 72, 2587-2592.	6.3	1
4	On the Error Performance of LoRa-Enabled Aerial Networks Over Shadowed Rician Fading Channels. IEEE Communications Letters, 2022, 26, 2322-2326.	4.1	1
5	UAV-assisted data collection for wireless sensor networks with dynamic working modes. Digital Communications and Networks, 2022, , .	5.0	4
6	Performance Analysis and Optimization of RSMA Enabled UAV-Aided IBL and FBL Communication With Imperfect SIC and CSI. IEEE Transactions on Wireless Communications, 2023, 22, 3714-3732.	9.2	8
7	OADC: An Obstacle-Avoidance Data Collection Scheme Using Multiple Unmanned Aerial Vehicles. Applied Sciences (Switzerland), 2022, 12, 11509.	2.5	2
8	Multi-UAV Route Planning for Data Collection from Heterogeneous IoT Devices. , 2022, , .		1
9	Unity makes strength: Coalition Formation-based Group-buying for Timely UAV Data Collection. , 2022, , .		2
10	Al-Based Energy-Efficient UAV-Assisted IoT Data Collection with Integrated Trajectory and Resource Optimization. IEEE Wireless Communications, 2022, 29, 30-36.	9.0	3
11	Efficient Multi-UAV Assisted Data Gathering Schemes for Maximizing the Operation Time of Wireless Sensor Networks in Precision Farming. IEEE Transactions on Industrial Informatics, 2023, 19, 11664-11674.	11.3	3
12	Global Path Planning forÂMulti-objective UAV-Assisted Sensor Data Collection: A DRL Approach. Communications in Computer and Information Science, 2023, , 163-174.	0.5	1
13	Bayesian Optimization Enhanced Deep Reinforcement Learning for Trajectory Planning and Network Formation in Multi-UAV Networks. IEEE Transactions on Vehicular Technology, 2023, 72, 10933-10948.	6.3	6
14	Height-Fixed UAV Enabled Energy-Efficient Data Collection in RIS-Aided Wireless Sensor Networks. IEEE Transactions on Wireless Communications, 2023, 22, 7452-7463.	9.2	O
15	On Multi-Robot Data Collection and Offloading for Space-Aerial-Surface Computing. IEEE Wireless Communications, 2023, 30, 90-96.	9.0	1
16	Energy-Efficient Data Collection Scheme Based on Data Integrity Degree in UAV-Assisted IoT Network. Lecture Notes in Electrical Engineering, 2023, , 178-187.	0.4	O
17	A survey of UAV-based data collection: Challenges, solutions and future perspectives. Journal of Network and Computer Applications, 2023, 216, 103670.	9.1	8
18	Deep Reinforcement Learning-Based UAV Path Planning Algorithm in Agricultural Time-Constrained Data Collection. Advances in Electrical and Computer Engineering, 2023, 23, 101-108.	0.9	O

#	Article	IF	CITATIONS
19	An Efficient Evolution-Based Technique for Moving Target Search with Unmanned Aircraft Vehicle: Analysis and Validation. Mathematics, 2023, 11, 2606.	2.2	1
20	Joint Optimization of Deployment and Flight Planning of Multi-UAVs for Long-Distance Data Collection From Large-Scale IoT Devices. IEEE Internet of Things Journal, 2024, 11, 791-804.	8.7	1
21	Maximizing data gathering and energy efficiency in UAV-assisted IoT: A multi-objective optimization approach. Computer Networks, 2023, 235, 109986.	5.1	0
22	Energy Constrained Data Collection in Multi-UAV-Assisted IoT. , 2023, , .		1
23	UAV-Assisted Computation Offloading in Vehicular Networks. , 2023, , .		0
25	Towards Reliable Participation in UAV-Enabled Federated Edge Learning on Non-IID Data. IEEE Open Journal of Vehicular Technology, 2023, , 1-18.	4.9	0
26	Data-Efficient Energy-Aware Participant Selection for UAV-Enabled Federated Learning. , 2023, , .		0
27	Energy Optimization and Trajectory Planning for Constrained Multi-UAV Data Collection in WSNs. IEEE Access, 2024, 12, 9047-9061.	4.2	0