The Spatial and Cell-Type Distribution of SARS-CoV-2 R Mouse Brains

Frontiers in Neurology 11, 573095

DOI: 10.3389/fneur.2020.573095

Citation Report

#	Article	IF	CITATIONS
1	Headache in Patients With Severe Acute Respiratory Syndrome Coronavirus 2 Infection: A Narrative Review. Headache, 2020, 60, 2131-2138.	1.8	26
2	Effects of COVID-19 on the Nervous System. Cell, 2020, 183, 16-27.e1.	13.5	526
3	Dyspneic and non-dyspneic (silent) hypoxemia in COVID-19: Possible neurological mechanism. Clinical Neurology and Neurosurgery, 2020, 198, 106217.	0.6	62
4	ACE2, TMPRSS2 distribution and extrapulmonary organ injury in patients with COVID-19. Biomedicine and Pharmacotherapy, 2020, 131, 110678.	2.5	184
5	A Single-Cell RNA Expression Map of Human Coronavirus Entry Factors. Cell Reports, 2020, 32, 108175.	2.9	215
6	Coronavirus Disease 2019 (COVID-19) and Its Neuroinvasive Capacity: Is It Time for Melatonin?. Cellular and Molecular Neurobiology, 2022, 42, 489-500.	1.7	25
7	Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and glial cells: Insights and perspectives. Brain, Behavior, & Immunity - Health, 2020, 7, 100127.	1.3	64
8	Central Nervous System Manifestations Associated with COVID-19. Current Neurology and Neuroscience Reports, 2020, 20, 60.	2.0	73
9	Understanding the Immunologic Characteristics of Neurologic Manifestations of SARS-CoV-2 and Potential Immunological Mechanisms. Molecular Neurobiology, 2020, 57, 5263-5275.	1.9	61
10	Lifting the mask on neurological manifestations of COVID-19. Nature Reviews Neurology, 2020, 16, 636-644.	4.9	344
11	Is the brain a reservoir organ for SARS oV2?. Journal of Medical Virology, 2020, 92, 2354-2355.	2.5	28
12	Potential neuroinvasive pathways of SARSâ€CoVâ€2: Deciphering the spectrum of neurological deficit seen in coronavirus diseaseâ€2019 (COVIDâ€19). Journal of Medical Virology, 2020, 92, 1845-1857.	2.5	105
13	A systematic review of neurological manifestations of SARSâ€CoVâ€2 infection: the devil is hidden in the details. European Journal of Neurology, 2020, 27, 1712-1726.	1.7	95
14	Hyperpyrexia in patients with COVIDâ€19. Journal of Medical Virology, 2020, 92, 2857-2862.	2.5	15
15	Clinical manifestations and evidence of neurological involvement in 2019 novel coronavirus SARS-CoV-2: a systematic review and meta-analysis. Journal of Neurology, 2020, 267, 2777-2789.	1.8	121
16	COVID-19 and the Chemical Senses: Supporting Players Take Center Stage. Neuron, 2020, 107, 219-233.	3.8	256
17	A systematic review of neurological symptoms and complications of COVID-19. Journal of Neurology, 2021, 268, 392-402.	1.8	192
18	Neurological Complications Associated with the Blood-Brain Barrier Damage Induced by the Inflammatory Response During SARS-CoV-2 Infection. Molecular Neurobiology, 2021, 58, 520-535.	1.9	81

#	Article	IF	CITATIONS
19	COVID-19 and stroke: A review. Brain Hemorrhages, 2021, 2, 76-83.	0.4	36
20	SARS-CoV-2 Infection: Symptoms of the Nervous System and Implications for Therapy in Neurological Disorders. Neurology and Therapy, 2021, 10, 31-42.	1.4	12
21	Cellular mechanisms underlying neurological/neuropsychiatric manifestations of COVIDâ€19. Journal of Medical Virology, 2021, 93, 1983-1998.	2.5	38
22	Cerebrospinal fluid findings in neurological diseases associated with COVID-19 and insights into mechanisms of disease development. International Journal of Infectious Diseases, 2021, 102, 155-162.	1.5	77
23	ACE2 & Systematic Review. Head and Neck Pathology, 2021, 15, 225-235.	1.3	45
24	Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): a Systemic Infection. Clinical Microbiology Reviews, 2021, 34, .	5.7	136
26	A genetic link between risk for Alzheimer's disease and severe COVID-19 outcomes via the <i>OAS1</i> gene. Brain, 2021, 144, 3727-3741.	3.7	65
27	Pathogenesis of Multiple Organ Injury in COVID-19 and Potential Therapeutic Strategies. Frontiers in Physiology, 2021, 12, 593223.	1.3	113
28	Pathophysiological Clues to How the Emergent SARS-CoV-2 Can Potentially Increase the Susceptibility to Neurodegeneration. Molecular Neurobiology, 2021, 58, 2379-2394.	1.9	38
29	Miller Fisher Syndrome in Patients With Severe Acute Respiratory Syndrome Coronavirus 2 Infection:		

#	Article	IF	Citations
39	Potenciales mecanismos de neuroinvasi \tilde{A}^3 n del SARS-CoV-2: una revisi \tilde{A}^3 n de la literatura actual Revista De Neuro-psiquiatria, 2021, 84, 25-32.	0.0	3
40	Neurotropic Viruses, Astrocytes, and COVID-19. Frontiers in Cellular Neuroscience, 2021, 15, 662578.	1.8	40
41	Endothelial cells and SARS-CoV-2: An intimate relationship. Vascular Pharmacology, 2021, 137, 106829.	1.0	45
42	Neuropathophysiology of coronavirus disease 2019: neuroinflammation and blood brain barrier disruption are critical pathophysiological processes that contribute to the clinical symptoms of SARS-CoV-2 infection. Inflammopharmacology, 2021, 29, 939-963.	1.9	42
43	Neurological update: COVID-19. Journal of Neurology, 2021, 268, 4379-4387.	1.8	25
44	Longitudinal Neurocognitive and Pulmonological Profile of Long COVID-19: Protocol for the COVIMMUNE-Clin Study. JMIR Research Protocols, 2021, 10, e30259.	0.5	8
45	Zebrafish as a Translational Model: An Experimental Alternative to Study the Mechanisms Involved in Anosmia and Possible Neurodegenerative Aspects of COVID-19?. ENeuro, 2021, 8, ENEURO.0027-21.2021.	0.9	9
47	Is the Frontal Lobe the Primary Target of SARS-CoV-2?. Journal of Alzheimer's Disease, 2021, 81, 75-81.	1.2	39
48	SARS-CoV-2 targets glial cells in human cortical organoids. Stem Cell Reports, 2021, 16, 1156-1164.	2.3	73
49	First Report of SARS-CoV-2 Detection in Cerebrospinal Fluid in a Child With Guillain-Barré Syndrome. Pediatric Infectious Disease Journal, 2021, 40, e274-e276.	1.1	33
50	Covidâ€19 Infection and Parkinsonism: Is There a Link?. Movement Disorders, 2021, 36, 1737-1743.	2.2	31
51	Features of cognitive disorders in COVID-19. International Neurological Journal, 2021, 17, 12-17.	0.2	3
52	Angiotensin-(1-7) and Mas receptor in the brain. Exploration of Medicine, 2021, 2, 268-293.	1.5	11
53	Neuromodulatory effects of SARS-CoV2 infection: Possible therapeutic targets. Expert Opinion on Therapeutic Targets, 2021, 25, 509-519.	1.5	0
54	NLRP3 and Infections: \hat{l}^2 -Amyloid in Inflammasome beyond Neurodegeneration. International Journal of Molecular Sciences, 2021, 22, 6984.	1.8	21
55	Microglial Implications in SARS-CoV-2 Infection and COVID-19: Lessons From Viral RNA Neurotropism and Possible Relevance to Parkinson's Disease. Frontiers in Cellular Neuroscience, 2021, 15, 670298.	1.8	40
56	Mild and moderate COVID-19 disease does not affect hearing function permanently: a cross-sectional study ınvolving young and middle-aged healthcare givers. European Archives of Oto-Rhino-Laryngology, 2021, 278, 3299-3305.	0.8	7
57	SARS-CoV-2 Neuronal Invasion and Complications: Potential Mechanisms and Therapeutic Approaches. Journal of Neuroscience, 2021, 41, 5338-5349.	1.7	28

#	Article	IF	CITATIONS
58	The Altered Anatomical Distribution of ACE2 in the Brain With Alzheimer's Disease Pathology. Frontiers in Cell and Developmental Biology, 2021, 9, 684874.	1.8	19
59	Use of Antioxidants for the Neuro-Therapeutic Management of COVID-19. Antioxidants, 2021, 10, 971.	2.2	21
60	Comprehensive Review on Neuro-COVID-19 Pathophysiology and Clinical Consequences. Neurotoxicity Research, 2021, 39, 1613-1629.	1.3	11
61	SARS-CoV-2 may trigger inflammasome and pyroptosis in the central nervous system: a mechanistic view of neurotropism. Inflammopharmacology, 2021, 29, 1049-1059.	1.9	16
62	The unfolding palette of COVID-19 multisystemic syndrome and its neurological manifestations. Brain, Behavior, & Immunity - Health, 2021, 14, 100251.	1.3	22
63	Emerging neurotropic features of SARS-CoV-2. Journal of Molecular Cell Biology, 2021, 13, 705-711.	1.5	12
64	SARS-CoV-2 Infected Pediatric Cerebral Cortical Neurons: Transcriptomic Analysis and Potential Role of Toll-like Receptors in Pathogenesis. International Journal of Molecular Sciences, 2021, 22, 8059.	1.8	10
66	Possible Link between SARS-CoV-2 Infection and Parkinson's Disease: The Role of Toll-Like Receptor 4. International Journal of Molecular Sciences, 2021, 22, 7135.	1.8	23
67	Genetic polymorphisms in the renin-angiotensin system and cognitive decline in Parkinson's disease. Molecular Biology Reports, 2021, 48, 5541-5548.	1.0	3
68	Molecular Mechanisms of Palmitic Acid Augmentation in COVID-19 Pathologies. International Journal of Molecular Sciences, 2021, 22, 7127.	1.8	9
70	What can the neurological manifestations of COVID-19 tell us: a meta-analysis. Journal of Translational Medicine, 2021, 19, 363.	1.8	15
71	Dementia and COVID-19, a Bidirectional Liaison: Risk Factors, Biomarkers, and Optimal Health Care. Journal of Alzheimer's Disease, 2021, 82, 883-898.	1.2	48
72	Neurological manifestations in mild and moderate cases of COVID-19. Egyptian Journal of Neurology, Psychiatry and Neurosurgery, 2021, 57, 109.	0.4	2
73	Neurological manifestations and complications of COVID-19. A literature review. Journal of Education, Health and Sport, 2021, 11, 349-360.	0.0	0
74	Viral respiratory infections and psychosis: A review of the literature and the implications of COVID-19. Neuroscience and Biobehavioral Reviews, 2021, 127, 520-530.	2.9	31
75	Hypothesis: Neuroglia Activation Due to Increased Peripheral and CNS Proinflammatory Cytokines/Chemokines with Neuroinflammation May Result in Long COVID. Neuroglia (Basel,) Tj ETQq1 1 0.784:	31 ⊕ ı ş BT /	Oværlock 10
76	Cell therapy strategies for COVID-19: Current approaches and potential applications. Science Advances, 2021, 7, .	4.7	20
77	Acute and chronic neurological disorders in COVID-19: potential mechanisms of disease. Brain, 2021, 144, 3576-3588.	3.7	101

#	Article	IF	Citations
78	COVID-19 infection and liver injury: Clinical features, biomarkers, potential mechanisms, treatment, and management challenges. World Journal of Clinical Cases, 2021, 9, 6178-6200.	0.3	24
79	Olfactory bulb SARS oVâ€2 infection is not paralleled by the presence of virus in other central nervous system areas. Neuropathology and Applied Neurobiology, 2022, 48, .	1.8	18
80	SARS-CoV-2 infection of the central nervous system in a 14-month-old child: A case report of a complete autopsy. The Lancet Regional Health Americas, 2021, 2, 100046.	1.5	18
81	COVID-19 and its Impact on Back Pain. Global Spine Journal, 2022, 12, 5-7.	1.2	15
82	Neuropsychiatric manifestations of COVID-19, potential neurotropic mechanisms, and therapeutic interventions. Translational Psychiatry, 2021, 11, 499.	2.4	35
83	Hyperinflammatory Immune Response and COVID-19: A Double Edged Sword. Frontiers in Immunology, 2021, 12, 742941.	2.2	81
84	SARS-CoV-2 crosses the blood–brain barrier accompanied with basement membrane disruption without tight junctions alteration. Signal Transduction and Targeted Therapy, 2021, 6, 337.	7.1	157
85	Immune mediating molecules and pathogenesis of COVID-19-associated neurological disease. Microbial Pathogenesis, 2021, 158, 105023.	1.3	18
86	Neurological sequelae of COVID-19: a review. Egyptian Journal of Neurology, Psychiatry and Neurosurgery, 2021, 57, 122.	0.4	26
87	Application of Human Induced Pluripotent Stem Cell-Derived Cellular and Organoid Models for COVID-19 Research. Frontiers in Cell and Developmental Biology, 2021, 9, 720099.	1.8	14
88	Tumor Necrosis Factor-Alpha Exacerbates Viral Entry in SARS-CoV2-Infected iPSC-Derived Cardiomyocytes. International Journal of Molecular Sciences, 2021, 22, 9869.	1.8	11
89	Neurological manifestations of COVID-19: a systematic review and detailed comprehension. International Journal of Neuroscience, 2023, 133, 754-769.	0.8	12
90	Rays of immunity: Role of sunshine Vitamin in management of COVID-19 infection and associated comorbidities. Clinical Nutrition ESPEN, 2021, 46, 21-32.	0.5	3
91	Neurological manifestations of COVID-19: A comprehensive literature review and discussion of mechanisms. Journal of Neuroimmunology, 2021, 358, 577658.	1.1	52
92	Emerging potential mechanisms and predispositions to the neurological manifestations of COVID-19. Journal of the Neurological Sciences, 2021, 428, 117608.	0.3	16
93	Assessing the extent and timing of chemosensory impairments during COVID-19 pandemic. Scientific Reports, 2021, 11, 17504.	1.6	23
94	A mini-review on the impact of COVID 19 on vital organs. Biomedicine and Pharmacotherapy, 2021, 143, 112158.	2.5	29
95	Purinergic Signaling of ATP in COVID-19 Associated Guillain-Barré Syndrome. Journal of NeuroImmune Pharmacology, 2021, 16, 48-58.	2.1	17

#	Article	IF	CITATIONS
96	Physical exercise effects on the brain during COVID-19 pandemic: links between mental and cardiovascular health. Neurological Sciences, 2021, 42, 1325-1334.	0.9	58
97	Infection Mechanism of SARS-COV-2 and Its Implication on the Nervous System. Frontiers in Immunology, 2020, 11, 621735.	2.2	59
98	Direct and indirect neurological, cognitive, and behavioral effects of COVID-19 on the healthy elderly, mild-cognitive-impairment, and Alzheimer's disease populations. Neurological Sciences, 2021, 42, 455-465.	0.9	59
99	Neurological symptoms, manifestations, and complications associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 19 (COVID-19). Journal of Neurology, 2021, 268, 3059-3071.	1.8	208
100	Evidence of Coronavirus (CoV) Pathogenesis and Emerging Pathogen SARS-CoV-2 in the Nervous System: A Review on Neurological Impairments and Manifestations. Journal of Molecular Neuroscience, 2021, 71, 2192-2209.	1.1	89
101	A Review on the Neurological Manifestations of COVID-19 Infection: a Mechanistic View. Molecular Neurobiology, 2021, 58, 536-549.	1.9	35
102	Innate Immunity Plays a Key Role in Controlling Viral Load in COVID-19: Mechanistic Insights from a Whole-Body Infection Dynamics Model. ACS Pharmacology and Translational Science, 2021, 4, 248-265.	2.5	36
104	Brain crossâ€protection against SARSâ€CoVâ€2 variants by a lentiviral vaccine in new transgenic mice. EMBO Molecular Medicine, 2021, 13, e14459.	3.3	25
106	Decrease in pain perception during acute SARS-CoV-2 infection: a case series. Pain, 2022, 163, 1019-1022.	2.0	3
107	Persistent chemosensory dysfunction in a young patient with mild COVID-19 with partial recovery 15Âmonths after the onset. Neurological Sciences, 2022, 43, 99-104.	0.9	12
108	COVID-19 and Alzheimer's Disease: A Literature Review. Medicina (Lithuania), 2021, 57, 1159.	0.8	22
109	Neuroimmune multi-hit perspective of coronaviral infection. Journal of Neuroinflammation, 2021, 18, 231.	3.1	9
110	SARS-CoV-2 S1 Protein Induces Endolysosome Dysfunction and Neuritic Dystrophy. Frontiers in Cellular Neuroscience, 2021, 15, 777738.	1.8	7
111	Neurotropism of SARS-CoV-2 and neurological diseases of the central nervous system in COVID-19 patients. Experimental Brain Research, 2022, 240, 9-25.	0.7	38
112	Neuropathogenesis of severe acute respiratory syndrome coronavirus 2. Current Opinion in Pediatrics, 2021, Publish Ahead of Print, 597-602.	1.0	4
113	COVID-19 and the Brain: A Psychological and Resting-state Functional Magnetic Resonance Imagin (fMRI) Study of the Whole-brain Functional Connectivity. Basic and Clinical Neuroscience, 2023, 14, 753-772.	0.3	2
114	Did the COVID-19 Pandemic Increase the Incidence of Acute Macular Neuroretinopathy?. Journal of Clinical Medicine, 2021, 10, 5038.	1.0	32
115	SARS-CoV-2 infection-associated detrimental effects on the various human organs. International Journal of Clinical Virology, 2021, 5, 072-081.	0.1	1

#	Article	IF	CITATIONS
116	Neurological manifestations of coronavirus infections, before and after COVID-19: a review of animal studies. Journal of NeuroVirology, 2021, , 1 .	1.0	3
117	SARS-CoV-2 involvement in central nervous system tissue damage. Neural Regeneration Research, 2022, 17, 1228.	1.6	31
118	Does COVID-19 Affect Adult Neurogenesis? A Neurochemical Perspective., 0, , .		0
119	Neurosurgery at the crossroads of immunology and nanotechnology. New reality in the COVID-19 pandemic. Advanced Drug Delivery Reviews, 2022, 181, 114033.	6.6	5
121	Understanding the role of nACE2 in neurogenic hypertension among COVID-19 patients. Hypertension Research, 2022, 45, 254-269.	1.5	10
122	Neurological complications and infection mechanism of SARS-CoV-2. Signal Transduction and Targeted Therapy, 2021, 6, 406.	7.1	76
124	Restoration of Brain Angiotensin-Converting Enzyme 2 Alleviates Neurological Deficits after Severe Traumatic Brain Injury via Mitigation of Pyroptosis and Apoptosis. Journal of Neurotrauma, 2021, , .	1.7	10
125	SARS-CoV-2 spike S1 subunit induces neuroinflammatory, microglial and behavioral sickness responses: Evidence of PAMP-like properties. Brain, Behavior, and Immunity, 2022, 100, 267-277.	2.0	86
126	Molecular Mechanisms of SARS-CoV-2/COVID-19 Pathogenicity on the Central Nervous System: Bridging Experimental Probes to Clinical Evidence and Therapeutic Interventions. Advances in Experimental Medicine and Biology, 2021, , 1.	0.8	1
127	A novel histone deacetylase inhibitorâ€based approach to eliminate microglia and retain astrocyte properties in glial cell culture. Journal of Neurochemistry, 2022, 161, 405-416.	2.1	4
128	Olfactory Dysfunction in Patients With Coronavirus Disease 2019: A Review. Frontiers in Neurology, 2021, 12, 783249.	1.1	18
129	Can SARS-CoV-2 Infection Exacerbate Alzheimer's Disease? An Overview of Shared Risk Factors and Pathogenetic Mechanisms. Journal of Personalized Medicine, 2022, 12, 29.	1.1	17
130	Impact of the COVID-19 Pandemic on Chronic Neurological Disorders: Focus on Patients with Dementia. CNS and Neurological Disorders - Drug Targets, 2022, 21, 1017-1026.	0.8	6
131	The Inhibition of RNA Viruses by <i>Amaryllidaceae</i> Alkaloids: Opportunities for the Development of Broadâ€Spectrum Antiâ€Coronavirus Drugs. Chemistry - an Asian Journal, 2022, 17, e202101215.	1.7	6
132	Nutraceuticals in HIV and COVID-19-Related Neurological Complications: Opportunity to Use Extracellular Vesicles as Drug Delivery Modality. Biology, 2022, 11, 177.	1.3	5
133	The Tissue Distribution of SARS-CoV-2 in Transgenic Mice With Inducible Ubiquitous Expression of hACE2. Frontiers in Molecular Biosciences, 2021, 8, 821506.	1.6	7
135	Olfactory training for olfactory dysfunction in COVIDâ€19: A promising mitigation amidst looming neurocognitive sequelae of the pandemic. Clinical and Experimental Pharmacology and Physiology, 2022, 49, 462-473.	0.9	9
136	Oxidative stress and inflammatory markers in patients with COVID-19: Potential role of RAGE, HMGB1, GFAP and COX-2 in disease severity. International Immunopharmacology, 2022, 104, 108502.	1.7	30

#	ARTICLE	IF	CITATIONS
137	Multiple Aspects of Inappropriate Action of Renin–Angiotensin, Vasopressin, and Oxytocin Systems in Neuropsychiatric and Neurodegenerative Diseases. Journal of Clinical Medicine, 2022, 11, 908.	1.0	14
138	Long COVID, neuropsychiatric disorders, psychotropics, present and future. Acta Neuropsychiatrica, 2022, 34, 109-126.	1.0	30
139	Persistent white matter changes in recovered COVID-19 patients at the 1-year follow-up. Brain, 2022, 145, 1830-1838.	3.7	50
140	Neurological manifestations of long-COVID syndrome: a narrative review. Therapeutic Advances in Chronic Disease, 2022, 13, 204062232210768.	1.1	120
141	COVID 19 in a family with rare genetic disease of the nervous system. Nevrologiya, Neiropsikhiatriya, Psikhosomatika, 2022, 14, 108-114.	0.2	3
142	Maternal Immune Activation and Interleukin 17A in the Pathogenesis of Autistic Spectrum Disorder and Why It Matters in the COVID-19 Era. Frontiers in Psychiatry, 2022, 13, 823096.	1.3	5
143	The mechanism underlying extrapulmonary complications of the coronavirus disease 2019 and its therapeutic implication. Signal Transduction and Targeted Therapy, 2022, 7, 57.	7.1	34
144	SARS-CoV-2 Infects Primary Neurons from Human ACE2 Expressing Mice and Upregulates Genes Involved in the Inflammatory and Necroptotic Pathways. Pathogens, 2022, 11, 257.	1.2	25
145	HDAC Inhibition as Neuroprotection in COVID-19 Infection. Current Topics in Medicinal Chemistry, 2022, 22, 1369-1378.	1.0	6
146	Could SARS-CoV-2 Infection Be a Novel Risk Factor for Multiple Sclerosis?. NeuroImmunoModulation, 2022, 29, 251-254.	0.9	2
147	Pathogenesis of Olfactory Disorders in COVID-19. Brain Sciences, 2022, 12, 449.	1.1	12
148	SARS-CoV-2 Morbidity in the CNS and the Aged Brain Specific Vulnerability. International Journal of Molecular Sciences, 2022, 23, 3782.	1.8	2
149	"Anosmia―the mysterious collateral damage of COVID-19. Journal of NeuroVirology, 2022, 28, 189-200.	1.0	13
150	Mechanisms of coronavirus infectious disease 2019-related neurologic diseases. Current Opinion in Neurology, 2022, 35, 392-398.	1.8	11
151	SARS-CoV-2 spike protein induces cognitive deficit and anxiety-like behavior in mouse via non-cell autonomous hippocampal neuronal death. Scientific Reports, 2022, 12, 5496.	1.6	26
152	Normal pressure hydrocephalus associated with COVID-19 infection: a case report. BMC Infectious Diseases, 2022, 22, 216.	1.3	8
153	Coronaviruses and their relationship with multiple sclerosis: is the prevalence of multiple sclerosis going to increase after the Covid-19 pandemia?. Reviews in the Neurosciences, 2022, 33, 703-720.	1.4	7
154	Human Brain Organoids as Models for Central Nervous System Viral Infection. Viruses, 2022, 14, 634.	1.5	20

#	Article	IF	CITATIONS
155	SARS oVâ€2 and Mitochondrial Proteins in Neuralâ€Derived Exosomes of COVIDâ€19. Annals of Neurology, 2022, 91, 772-781.	2.8	63
156	Vestibular Cochlear Manifestations in COVID-19 Cases. Frontiers in Neurology, 2022, 13, 850337.	1.1	15
157	The neuroinvasiveness, neurotropism, and neurovirulence of SARS-CoV-2. Trends in Neurosciences, 2022, 45, 358-368.	4.2	118
158	Functional connectivity underlying cognitive and psychiatric symptoms in post-COVID-19 syndrome: is anosognosia a key determinant?. Brain Communications, 2022, 4, fcac057.	1.5	35
160	COVID-19-Related Brain Injury: The Potential Role of Ferroptosis. Journal of Inflammation Research, 2022, Volume 15, 2181-2198.	1.6	15
161	Impact of SARS-CoV-2 on Host Factors Involved in Mental Disorders. Frontiers in Microbiology, 2022, 13, 845559.	1.5	5
162	Consequences of Viral Infection and Cytokine Production During Pregnancy on Brain Development in Offspring. Frontiers in Immunology, 2022, 13, 816619.	2.2	15
163	Clinical outcomes of COVIDâ€19 infection among patients with Alzheimer's disease or mild cognitive impairment. Alzheimer's and Dementia, 2022, 18, 911-923.	0.4	13
164	COVID-19: Cellular and Molecular Mechanisms of Brain Damage. Biology Bulletin Reviews, 2022, 12, 131-139.	0.3	0
165	Comprehensive Oncogenic Features of Coronavirus Receptors in Glioblastoma Multiforme. Frontiers in Immunology, 2022, 13, 840785.	2.2	8
166	Chronic rhinosinusitis is associated with increased risk of COVID-19 hospitalization. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 2022, 43, 103469.	0.6	2
167	Intranasal delivery of SARS-CoV-2 spike protein is sufficient to cause olfactory damage, inflammation and olfactory dysfunction in zebrafish. Brain, Behavior, and Immunity, 2022, 102, 341-359.	2.0	27
168	TOM70 in Glial Cells as a Potential Target for Treatment of COVID-19. Frontiers in Cellular Neuroscience, 2021, 15, 811376.	1.8	0
169	Biomedical Perspectives of Acute and Chronic Neurological and Neuropsychiatric Sequelae of COVID-19. Current Neuropharmacology, 2022, 20, 1229-1240.	1.4	16
170	miRNAs, from Evolutionary Junk to Possible Prognostic Markers and Therapeutic Targets in COVID-19. Viruses, 2022, 14, 41.	1.5	18
171	Physical activity and mental well-being during COVID-19 pandemic. World Journal of Psychiatry, 2021, 11, 1267-1273.	1.3	7
173	Adverse effects of COVID-19 mRNA vaccines: the spike hypothesis. Trends in Molecular Medicine, 2022, 28, 542-554.	3.5	104
174	Multimodal Benefits of Exercise in Patients With Multiple Sclerosis and COVID-19. Frontiers in Physiology, 2022, 13, 783251.	1.3	3

#	Article	IF	CITATIONS
175	SARS-CoV-2 and neurodegenerative diseases: what we know and what we don't. Journal of Neural Transmission, 2022, 129, 1155-1167.	1.4	19
176	Is facial nerve palsy an early manifestation of COVID-19? A literature review. American Journal of the Medical Sciences, 2022, 364, 264-273.	0.4	7
177	Role of SARS-CoV-2 in Modifying Neurodegenerative Processes in Parkinson's Disease: A Narrative Review. Brain Sciences, 2022, 12, 536.	1.1	6
178	SARS-CoV-2 Attacks in the Brain: Focus on the Sialome. Cells, 2022, 11, 1458.	1.8	3
179	SARS-CoV-2 and Multiple Sclerosis: Potential for Disease Exacerbation. Frontiers in Immunology, 2022, 13, 871276.	2.2	13
180	Neuropathological Aspects of SARS-CoV-2 Infection: Significance for Both Alzheimer's and Parkinson's Disease. Frontiers in Neuroscience, 2022, 16, 867825.	1.4	6
182	3D Bioprinted Neuralâ€Like Tissue as a Platform to Study Neurotropism of Mouseâ€Adapted SARSâ€CoVâ€2. Advanced Biology, 2022, 6, e2200002.	1.4	4
183	Molecular Mechanisms in the Genesis of Seizures and Epilepsy Associated With Viral Infection. Frontiers in Molecular Neuroscience, 2022, 15, .	1.4	13
184	Unusual Post–COVID-19 Presentation With Tetraventricular Hydrocephalus. Neurology: Clinical Practice, 2022, 12, .	0.8	5
185	Deconstructing the functional neuroanatomy of the choroid plexus: an ontogenetic perspective for studying neurodevelopmental and neuropsychiatric disorders. Molecular Psychiatry, 2022, 27, 3573-3582.	4.1	16
186	Molecular signaling pathways, pathophysiological features in various organs, and treatment strategies in SARS-CoV2 infection. Acta Histochemica, 2022, 124, 151908.	0.9	3
187	SARS-CoV-2: A Master of Immune Evasion. Biomedicines, 2022, 10, 1339.	1.4	24
188	Selective visuoconstructional impairment following mild COVID-19 with inflammatory and neuroimaging correlation findings. Molecular Psychiatry, 2023, 28, 553-563.	4.1	17
189	Potential role of astrocyte angiotensin converting enzyme 2 in the neural transmission of COVID-19 and a neuroinflammatory state induced by smoking and vaping. Fluids and Barriers of the CNS, 2022, 19,	2.4	13
190	Medicinal Herbs in the Relief of Neurological, Cardiovascular, and Respiratory Symptoms after COVID-19 Infection A Literature Review. Cells, 2022, 11, 1897.	1.8	14
191	HYGIEIA: HYpothesizing the Genesis of Infectious Diseases and Epidemics through an Integrated Systems Biology Approach. Viruses, 2022, 14, 1373.	1.5	2
192	Preferential uptake of SARS-CoV-2 by pericytes potentiates vascular damage and permeability in an organoid model of the microvasculature. Cardiovascular Research, 2022, 118, 3085-3096.	1.8	17
193	CRISPR/CasRx-Mediated RNA Knockdown Reveals That ACE2 Is Involved in the Regulation of Oligodendroglial Cell Morphological Differentiation. Non-coding RNA, 2022, 8, 42.	1.3	5

#	Article	IF	CITATIONS
194	Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation. Cell, 2022, 185, 2452-2468.e16.	13.5	237
195	Experimental Models of SARS-COV-2 Infection in the Central Nervous System. Journal of Central Nervous System Disease, 2022, 14, 117957352211022.	0.7	0
196	K18- and CAG-hACE2 Transgenic Mouse Models and SARS-CoV-2: Implications for Neurodegeneration Research. Molecules, 2022, 27, 4142.	1.7	7
197	Oleuropein as a Potent Compound against Neurological Complications Linked with COVID-19: A Computational Biology Approach. Entropy, 2022, 24, 881.	1.1	3
198	Residual Neuropsychiatric Sequelae of the Elderly and Neurocognitive Disorder Patients Who Recovered from Coronavirus Infection (COVID-19): A review. Korean Journal of Clinical Geriatrics, 2022, 23, 16-22.	0.3	0
199	IgA nephropathy and spinal epidural abscess after COVID-19 infection: a case report. Future Virology, 2022, 17, 611-615.	0.9	5
200	Genomic surveillance of SARS-CoV-2 in patients presenting neurological manifestations. PLoS ONE, 2022, 17, e0270024.	1.1	2
201	SARS-CoV-2 and Guillain–Barré Syndrome: Lessons from Viral Infections. Viral Immunology, 2022, 35, 404-417.	0.6	7
202	Can COVID-19 pandemic worsen previous neurological/psychiatric diseases?. Neurology Perspectives, 2022, 2, 143-150.	0.2	1
203	"Other Than NLRP3―Inflammasomes: Multiple Roles in Brain Disease. Neuroscientist, 2024, 30, 23-48.	2.6	5
204	COVID-19 and Parkinsonism: A Critical Appraisal. Biomolecules, 2022, 12, 970.	1.8	14
205	Multi-Data Integration Towards a Global Understanding of the Neurological Impact of Human Brain Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Frontiers in Integrative Neuroscience, 0, 16, .	1.0	0
206	Neuroinflammation and COVID-19. Current Opinion in Neurobiology, 2022, 76, 102608.	2.0	40
207	<scp>SARSâ€CoV</scp> â€2 infection impacts carbon metabolism and depends on glutamine for replication in Syrian hamster astrocytes. Journal of Neurochemistry, 2022, 163, 113-132.	2.1	14
208	Dithymoquinone Analogues as Potential Candidate(s) for Neurological Manifestation Associated with COVID-19: A Therapeutic Strategy for Neuro-COVID. Life, 2022, 12, 1076.	1.1	2
209	Therapeutic Approaches to the Neurologic Manifestations of COVID-19. Neurotherapeutics, 2022, 19, 1435-1466.	2.1	22
210	Tunneling nanotubes provide a route for SARS-CoV-2 spreading. Science Advances, 2022, 8, .	4.7	55
211	Protein Expression Profile of ACE2 in the Normal and COVID-19-Affected Human Brain. Journal of Proteome Research, 2022, 21, 2137-2145.	1.8	12

#	Article	IF	CITATIONS
212	Putative role of mitochondria in SARS-CoV-2 mediated brain dysfunctions: a prospect. Biotechnology and Genetic Engineering Reviews, 0, , 1-26.	2.4	8
213	Recent insights into viral infections as a trigger and accelerator in alzheimer's disease. Drug Discovery Today, 2022, , 103340.	3.2	4
214	Role of aging in Blood–Brain Barrier dysfunction and susceptibility to SARS-CoV-2 infection: impacts on neurological symptoms of COVID-19. Fluids and Barriers of the CNS, 2022, 19, .	2.4	10
215	Central nervous system manifestations of monogenic autoinflammatory disorders and the neurotropic features of SARS-CoV-2: Drawing the parallels. Frontiers in Pediatrics, 0, 10, .	0.9	2
217	SARS-CoV-2 mediated neurological disorders in COVID-19: Measuring the pathophysiology and immune response. Life Sciences, 2022, 308, 120981.	2.0	5
218	Pathogenesis of certain neurological complications of new coronavirus infection: a foreign literature review. Profilakticheskaya Meditsina, 2022, 25, 98.	0.2	0
219	Neurologic complications of coronavirus and other respiratory viral infections. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2022, , 331-358.	1.0	14
220	Post-COVID-19 Parkinsonism and Parkinson's Disease Pathogenesis: The Exosomal Cargo Hypothesis. International Journal of Molecular Sciences, 2022, 23, 9739.	1.8	8
221	Exploring the Paradox of COVID-19 in Neurological Complications with Emphasis on Parkinson's and Alzheimer's Disease. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-16.	1.9	24
222	Cytokine Storm and Neuropathological Alterations in Patients with Neurological Manifestations of COVID-19. Current Alzheimer Research, 2022, 19, 641-657.	0.7	11
223	COVID-19 and cognitive impairment: neuroinvasive and bloodâ€'brain barrier dysfunction. Journal of Neuroinflammation, 2022, 19, .	3.1	36
224	Citicoline and COVID-19: vis-Ã-vis conjectured. Naunyn-Schmiedeberg's Archives of Pharmacology, 2022, 395, 1463-1475.	1.4	12
225	The choroid plexus and its role in the pathogenesis of neurological infections. Fluids and Barriers of the CNS, 2022, 19, .	2.4	20
226	Post-viral fatigue in COVID-19: A review of symptom assessment methods, mental, cognitive, and physical impairment. Neuroscience and Biobehavioral Reviews, 2022, 142, 104902.	2.9	16
227	SARSâ€CoVâ€2 cellular tropism and direct multiorgan failure in COVIDâ€19 patients: Bioinformatic predictions, experimental observations, and open questions. Cell Biology International, 2023, 47, 308-326.	1.4	7
228	Neuro–Immune Interactions in Severe COVID-19 Infection. Pathogens, 2022, 11, 1256.	1.2	1
229	Neuropilin-1 Mediates SARS-CoV-2 Infection of Astrocytes in Brain Organoids, Inducing Inflammation Leading to Dysfunction and Death of Neurons. MBio, 2022, 13, .	1.8	33
230	Pathophysiology of Post-COVID syndromes: a new perspective. Virology Journal, 2022, 19, .	1.4	42

#	Article	IF	CITATIONS
231	Mechanisms of COVID-19-induced cerebellitis. Current Medical Research and Opinion, 2022, 38, 2109-2118.	0.9	1
232	Acute Myocardial Infarction Complicating Coronavirus Infection (Case Report). Obshchaya Reanimatologiya, 2022, 18, 18-23.	0.2	2
233	Integrated network-based multiple computational analyses for identification of co-expressed candidate genes associated with neurological manifestations of COVID-19. Scientific Reports, 2022, 12, .	1.6	1
234	Is SARS-CoV-2 a Risk Factor of Bipolar Disorder?—A Narrative Review. Journal of Clinical Medicine, 2022, 11, 6060.	1.0	4
235	Immunoglobulin Y Specific for SARS-CoV-2 Spike Protein Subunits Effectively Neutralizes SARS-CoV-2 Infectivity and Ameliorates Disease Manifestations In Vivo. Biomedicines, 2022, 10, 2774.	1.4	0
236	SARS-CoV-2 drives NLRP3 inflammasome activation in human microglia through spike protein. Molecular Psychiatry, 2023, 28, 2878-2893.	4.1	47
237	The Infected Lungs and Brain Interface in COVID-19: The Impact on Cognitive Function. NeuroImmunoModulation, 2022, 29, 269-281.	0.9	2
238	Co-ultramicronized palmitoylethanolamide/luteolin normalizes GABAB-ergic activity and cortical plasticity in long COVID-19 syndrome. Clinical Neurophysiology, 2023, 145, 81-88.	0.7	10
239	Objective Evaluation of Smell and Taste Senses in COVID-19 Patients. Turkish Archives of Otorhinolaryngology, 2022, 60, 128-133.	0.2	4
240	Cognitive consequences of COVID-19. Zhurnal Nevrologii I Psikhiatrii Imeni S S Korsakova, 2022, 122, 7.	0.1	0
241	The RAAS Axis and SARS-CoV-2: From Oral to Systemic Manifestations. Medicina (Lithuania), 2022, 58, 1717.	0.8	4
242	Brain organoids for addressing COVID-19 challenge. Frontiers in Neuroscience, 0, 16, .	1.4	0
243	SARS-CoV-2-mediated liver injury: pathophysiology and mechanisms of disease. Inflammation Research, 2023, 72, 301-312.	1.6	4
244	Astrocytes in the pathophysiology of neuroinfection. Essays in Biochemistry, 2023, 67, 131-145.	2.1	5
245	<scp>MRI</scp> Assessment of Cerebral Blood Flow in Nonhospitalized Adults Who Selfâ€Isolated Due to <scp>COVID</scp> â€I9. Journal of Magnetic Resonance Imaging, 2023, 58, 593-602.	1.9	10
246	Neurological complications of COVID-19. QJM - Monthly Journal of the Association of Physicians, 2023, 116, 161-180.	0.2	8
247	Neurotropism as a Mechanism of the Damaging Action of Coronavirus. Biology Bulletin Reviews, 2022, 12, 667-678.	0.3	1
248	The contribution of gut-brain axis to development of neurological symptoms in COVID-19 recovered patients: A hypothesis and review of literature. Frontiers in Cellular and Infection Microbiology, 0, 12,	1.8	10

#	Article	IF	Citations
249	The relationship between chronic immune response and neurodegenerative damage in long COVID-19. Frontiers in Immunology, 0, 13 , .	2.2	11
250	Fluoxetine plus lithium for treatment of mental health impairment in Long Covid. Discover Mental Health, 2023, 3, .	1.0	1
251	Social Media Devices' Influence on User Neck Pain during the COVID-19 Pandemic: Collaborating Vertebral-GLCM Extracted Features with a Decision Tree. Journal of Imaging, 2023, 9, 14.	1.7	3
252	Do SARS-CoV-2 Variants Differ in Their Neuropathogenicity?. MBio, 0, , .	1.8	1
253	COVID-19 and New-Onset Psychosis: A Comprehensive Review. Journal of Personalized Medicine, 2023, 13, 104.	1.1	9
254	Spatial Mapping of Genes Implicated in SARS-CoV-2 Neuroinvasion to Dorsolateral Prefrontal Cortex Gray Matter. Covid, 2023, 3, 82-89.	0.7	1
255	Links between COVID-19 and Parkinson's disease/Alzheimer's disease: reciprocal impacts, medical care strategies and underlying mechanisms. Translational Neurodegeneration, 2023, 12, .	3.6	15
256	Preliminary outcomes of the COVID-19 pandemic: a new chronic pain profile. Regional Anesthesia and Acute Pain Management, 2023, 16, 171-183.	0.1	0
257	The type I interferon antiviral response in the choroid plexus and the cognitive risk in COVID-19. Nature Immunology, 2023, 24, 220-224.	7.0	12
259	SARS-CoV-2 Infection of Human Neurons Is TMPRSS2 Independent, Requires Endosomal Cell Entry, and Can Be Blocked by Inhibitors of Host Phosphoinositol-5 Kinase. Journal of Virology, 2023, 97, .	1.5	9
260	Aged brain and neuroimmune responses to COVID-19: post-acute sequelae and modulatory effects of behavioral and nutritional interventions. Immunity and Ageing, 2023, 20, .	1.8	3
261	A systematic review on impact of SARS-CoV-2 infection. Microbiological Research, 2023, 271, 127364.	2.5	1
262	Hydrocephalus As Possible Prodromal Manifestation of COVID-19: A Report of Two Cases. Cureus, 2023,	0.2	1
263	Potential of Nano-Antioxidants and Nanomedicine for Recovery from Neurological Disorders Linked to Long COVID Syndrome. Antioxidants, 2023, 12, 393.	2.2	9
264	COVID-19 and Its Impact on Onset and Progression of Parkinson's and Cognitive Dysfunction. , 0, , .		0
265	Human brain organoids to explore SARSâ€CoVâ€2â€induced effects on the central nervous system. Reviews in Medical Virology, 2023, 33, .	3.9	7
266	Global Human Threat: The Potential Synergism between Mercury Intoxication and COVID-19. International Journal of Environmental Research and Public Health, 2023, 20, 4207.	1.2	6
267	Brain renin–angiotensin system in the injured brain. , 2023, , 449-471.		0

#	Article	IF	CITATIONS
268	The contribution of angiotensin peptides to cardiovascular neuroregulation in health and disease. , $2023, , 21-75.$		0
269	Role of Angiotensin Converting Enzyme-2 and its modulation in disease: exploring new frontiers. Medicine and Pharmacy Reports, 2023, 96, 146-153.	0.2	1
270	An eye to the future: Acute and longâ€term neuroâ€ophthalmological and neurological complications of COVIDâ€19. Clinical and Experimental Ophthalmology, 2023, 51, 370-379.	1.3	3
271	Alteration of the blood-brain barrier by COVID-19 and its implication in the permeation of drugs into the brain. Frontiers in Cellular Neuroscience, 0, 17, .	1.8	10
272	Dopamine Transmission Imbalance in Neuroinflammation: Perspectives on Long-Term COVID-19. International Journal of Molecular Sciences, 2023, 24, 5618.	1.8	3
273	The viral hypothesis in Alzheimer's disease: SARS-CoV-2 on the cusp. Frontiers in Aging Neuroscience, 0, 15, .	1.7	5
274	The role of the blood–brain barrier during neurological disease and infection. Biochemical Society Transactions, 2023, 51, 613-626.	1.6	11
275	Hydrocephalus secondary to COVID-19 infection. QJM - Monthly Journal of the Association of Physicians, $0, , .$	0.2	1
276	Organoids to Remodel SARS-CoV-2 Research: Updates, Limitations and Perspectives. , 2023, .		0
277	NLRP3 Inflammasome's Activation in Acute and Chronic Brain Diseasesâ€"An Update on Pathogenetic Mechanisms and Therapeutic Perspectives with Respect to Other Inflammasomes. Biomedicines, 2023, 11, 999.	1.4	6
278	Direct and indirect impact of SARS-CoV-2 on the brain. Human Genetics, 2023, 142, 1317-1326.	1.8	5
279	Historical Perspectives on the Neurologic Manifestations of Viral Pandemics. Seminars in Neurology, 0, , .	0.5	0
280	Mechanisms and implications of COVID-19 transport into neural tissue., 2023, , 123-132.		0
294	The COVID-19–related neuroinflammation model may reveal relevant information on healthy longevity. , 2023, , 47-73.		0
295	Long-term effects of SARS-CoV-2 infection on human brain and memory. Cell Death Discovery, 2023, 9, .	2.0	1
309	Central nervous system complications in SARS-CoV-2-infected patients. Journal of Neurology, 2023, 270, 4617-4631.	1.8	1
312	Interaction of SARS-CoV-2 with host cells and antibodies: experiment and simulation. Chemical Society Reviews, 2023, 52, 6497-6553.	18.7	1
313	Animal models to study the neurological manifestations of the post-COVID-19 condition. Lab Animal, 2023, 52, 202-210.	0.2	2

#	ARTICLE	IF	CITATIONS
316	Immune landscape and redox imbalance during neurological disorders in COVID-19. Cell Death and Disease, 2023, 14 , .	2.7	1
318	Brain Pathology in COVID-19: Clinical Manifestations and Potential Mechanisms. Neuroscience Bulletin, 2024, 40, 383-400.	1.5	0
324	Editorial: Bridging the gap between integrative neuroscience and translational neuroscience. Frontiers in Integrative Neuroscience, 0, 17 , .	1.0	0
337	Inflammasomes in neurological disorders — mechanisms and therapeutic potential. Nature Reviews Neurology, 2024, 20, 67-83.	4.9	2