Understanding nanoparticle endocytosis to improve tar

Chemical Society Reviews 50, 5397-5434 DOI: 10.1039/d0cs01127d

Citation Report

#	Article	IF	CITATIONS
1	Graphene nanoribbon-based supramolecular ensembles with dual-receptor targeting function for targeted photothermal tumor therapy. Chemical Science, 2021, 12, 11089-11097.	3.7	16
2	Smart Layer-by-Layer Polymeric Microreactors: pH-Triggered Drug Release and Attenuation of Cellular Oxidative Stress as Prospective Combination Therapy. ACS Applied Materials & Interfaces, 2021, 13, 18511-18524.	4.0	8
3	Interplay of Nanoparticle Properties during Endocytosis. Crystals, 2021, 11, 728.	1.0	12
4	Multimodal Tracking of Hematopoietic Stem Cells from Young and Old Mice Labeled with Magnetic–Fluorescent Nanoparticles and Their Grafting by Bioluminescence in a Bone Marrow Transplant Model. Biomedicines, 2021, 9, 752.	1.4	7
5	Modifying Polydiacetylene Vesicle Compositions to Reduce Non-Specific Interactions. Macromolecular Research, 2021, 29, 449-452.	1.0	3
6	An unexpected biomaterial against SARS-CoV-2: Bio-polyphosphate blocks binding of the viral spike to the cell receptor. Materials Today, 2021, 51, 504-524.	8.3	8
7	Colchicine-Containing Nanoparticles Attenuates Acute Myocardial Infarction Injury by Inhibiting Inflammation. Cardiovascular Drugs and Therapy, 2022, 36, 1075-1089.	1.3	17
8	<i>In situ</i> phase transitional polymeric vaccines for improved immunotherapy. National Science Review, 2022, 9, nwab159.	4.6	9
9	Synthesis of NaYF4:20% Yb3+,2% Er3+,2% Ce3+@NaYF4 nanorods and their size dependent uptake efficiency under flow condition. Journal of Rare Earths, 2022, 40, 1519-1526.	2.5	1
10	Nanomedicine-based delivery strategies for nucleic acid gene inhibitors in inflammatory diseases. Advanced Drug Delivery Reviews, 2021, 175, 113809.	6.6	30
12	Prospective Application of Nanoparticles Green Synthesized Using Medicinal Plant Extracts as Novel Nanomedicines. Nanotechnology, Science and Applications, 2021, Volume 14, 179-195.	4.6	17
13	Biomimetic nanoparticles loading with gamabutolin-indomethacin for chemo/photothermal therapy of cervical cancer and anti-inflammation. Journal of Controlled Release, 2021, 339, 259-273.	4.8	31
14	Nanoparticle-mediated specific elimination of soft cancer stem cells by targeting low cell stiffness. Acta Biomaterialia, 2021, 135, 493-505.	4.1	13
15	Titanium and Iron Oxide Nanoparticles for Cancer Therapy: Surface Chemistry and Biological Implications. Frontiers in Nanotechnology, 2021, 3, .	2.4	8
16	Distinct endocytosis and immune activation of poly(lactic-co-glycolic) acidÂnanoparticles prepared by single- and double-emulsion evaporation. Nanomedicine, 2021, 16, 2075-2094.	1.7	4
17	Biomaterial nanocarrier-driven mechanisms to modulate anti-tumor immunity. Current Opinion in Biomedical Engineering, 2021, 20, 100322.	1.8	1
18	Fate of CdSe/ZnS quantum dots in cells: Endocytosis, translocation and exocytosis. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112140.	2.5	19
19	Cetuximab-Ag ₂ S quantum dots for fluorescence imaging and highly effective combination of ALA-based photodynamic/chemo-therapy of colorectal cancer cells. Nanoscale, 2021, 13, 14879-14899.	2.8	25

#	Article	IF	CITATIONS
20	Tuning the organelle specificity and cytotoxicity of iridium(<scp>iii</scp>) photosensitisers for enhanced phototheranostic applications. Chemical Communications, 2021, 57, 12008-12011.	2.2	10
21	Functionalized Nanoparticles Targeting Tumor-Associated Macrophages as Cancer Therapy. Pharmaceutics, 2021, 13, 1670.	2.0	28
22	Amphiphilic DNA nanostructures for bottom-up synthetic biology. Chemical Communications, 2021, 57, 12725-12740.	2.2	24
23	Deciphering Nanoparticle Trafficking into Glioblastomas Uncovers an Augmented Antitumor Effect of Metronomic Chemotherapy. Advanced Materials, 2022, 34, e2106194.	11.1	17
24	How to exploit different endocytosis pathways to allow selective delivery of anticancer drugs to cancer cells over healthy cells. Chemical Science, 2021, 12, 15407-15417.	3.7	8
25	Nanomaterials targeting tumor associated macrophages for cancer immunotherapy. Journal of Controlled Release, 2022, 341, 272-284.	4.8	41
26	The effect of gold nanoparticles synthesized with Achillea biebersteinii on gene expression in Cultured preantral Follicles derived from NMRI mice ovary. Gene Reports, 2022, 26, 101449.	0.4	0
27	Perspectives on the Influence of Crystal Size and Morphology on the Properties of Porous Framework Materials. Frontiers in Chemistry, 2021, 9, 772059.	1.8	11
28	Multifunctional plasmonic gold nanostars for cancer diagnostic and therapeutic applications. Journal of Biophotonics, 2022, 15, e202100264.	1.1	6
29	Biomimetic neutrophil and macrophage dual membrane-coated nanoplatform with orchestrated tumor-microenvironment responsive capability promotes therapeutic efficacy against glioma. Chemical Engineering Journal, 2022, 433, 133848.	6.6	23
30	Regulation of Biological Functions at the Cell Interface by DNA Nanostructures. Advanced NanoBiomed Research, 2022, 2, 2100126.	1.7	2
31	Engineering of structural and functional properties of nanotherapeutics and nanodiagnostics for intranasal brain targeting in Alzheimer's. Applied Materials Today, 2022, 26, 101303.	2.3	13
32	Advances in tannic acid-incorporated biomaterials: Infection treatment, regenerative medicine, cancer therapy, and biosensing. Chemical Engineering Journal, 2022, 432, 134146.	6.6	71
33	Water stable, red emitting, carbon nanoparticles stimulate 3D cell invasion <i>via</i> clathrin-mediated endocytic uptake. Nanoscale Advances, 2022, 4, 1375-1386.	2.2	7
34	Combinatorial nanococktails via self-assembling lipid prodrugs for synergistically overcoming drug resistance and effective cancer therapy. Biomaterials Research, 2022, 26, 3.	3.2	10
35	Active targeting via ligand-anchored pH-responsive strontium nanoparticles for efficient nucleic acid delivery into breast cancer cells. Journal of Pharmaceutical Investigation, 2022, 52, 243-257.	2.7	14
36	Zeolitic Imidazolate Framework Nanoencapsulation of CpG for Stabilization and Enhancement of Immunoadjuvancy. ACS Applied Nano Materials, 2022, 5, 13697-13704.	2.4	14
37	Monitoring the distribution of internalized silica nanoparticles inside cells via direct stochastic optical reconstruction microscopy. Journal of Colloid and Interface Science, 2022, 615, 248-255.	5.0	2

#	Article	IF	CITATIONS
38	Impact of chitosan-based nanocarriers on cytoskeleton dynamics: Current status and challenges. Biocell, 2022, 46, 885-891.	0.4	0
39	Combining Citation Network Information and Text Similarity for Research Article Recommender Systems. IEEE Access, 2022, 10, 16-23.	2.6	8
40	Simultaneous Exposure of Different Nanoparticles Influences Cell Uptake. Pharmaceutics, 2022, 14, 136.	2.0	8
41	Drug delivery of 6-bromoindirubin-3'-glycerol-oxime ether employing poly(d,l-lactide-co-glycolide)-based nanoencapsulation techniques with sustainable solvents. Journal of Nanobiotechnology, 2022, 20, 5.	4.2	7
42	Carbon Dot Therapeutic Platforms: Administration, Distribution, Metabolism, Excretion, Toxicity, and Therapeutic Potential. Small, 2022, 18, e2106342.	5.2	75
43	Toxicity of BPNSs against Chlorella vulgaris: Oxidative damage, physical damage and self-protection mechanism. Plant Physiology and Biochemistry, 2022, 174, 63-72.	2.8	3
44	Targeting and promoting atherosclerosis regression using hybrid membrane coated nanomaterials via alleviated inflammation and enhanced autophagy. Applied Materials Today, 2022, 26, 101386.	2.3	7
45	GMT8 aptamer conjugated PEGylated Ag@Au core-shell nanoparticles as a novel radiosensitizer for targeted radiotherapy of glioma. Colloids and Surfaces B: Biointerfaces, 2022, 211, 112330.	2.5	13
46	Harnessing reactive oxygen/nitrogen species and inflammation: Nanodrugs for liver injury. Materials Today Bio, 2022, 13, 100215.	2.6	29
48	<i>In vivo</i> delivery of nuclear targeted drugs for lung cancer using novel synthesis and functionalization of iron oxide nanocrystals. New Journal of Chemistry, 2022, 46, 12488-12499.	1.4	6
49	Impact of RAFT chain transfer agents on the polymeric shell density of magneto-fluorescent nanoparticles and their cellular uptake. Nanoscale, 2022, 14, 5884-5898.	2.8	2
50	Lemonâ€Derived Extracellular Vesicles Nanodrugs Enable to Efficiently Overcome Cancer Multidrug Resistance by Endocytosisâ€īriggered Energy Dissipation and Energy Production Reduction. Advanced Science, 2022, 9, e2105274.	5.6	40
51	Cellular Uptake of Silica and Gold Nanoparticles Induces Early Activation of Nuclear Receptor NR4A1. Nanomaterials, 2022, 12, 690.	1.9	10
52	Defining Endocytic Pathways of Fucoidan-Coated PIBCA Nanoparticles from the Design of their Surface Architecture. Pharmaceutical Research, 2022, 39, 1135-1150.	1.7	7
53	How Does Immunomodulatory Nanoceria Work? ROS and Immunometabolism. Frontiers in Immunology, 2022, 13, 750175.	2.2	7
54	Study of oxygen-deficient W18O49-based drug delivery system readily absorbed through cellular internalization pathways in tumor-targeted chemo-/photothermal therapy. , 2022, 136, 212772.		2
55	Recent advances of nanodrug delivery system in the treatment of hematologic malignancies. Seminars in Cancer Biology, 2022, 86, 607-623.	4.3	10
56	Synthesis and Characterization of Size- and Charge-Tunable Silver Nanoparticles for Selective Anticancer and Antibacterial Treatment. ACS Applied Materials & Interfaces, 2022, 14, 14981-14996.	4.0	29

#	Article	IF	CITATIONS
57	The synthesis of nano bio-MOF-1 with a systematic evaluation on the biosafety and biocompatibility. Microporous and Mesoporous Materials, 2022, 334, 111773.	2.2	13
58	Stealth Luminescent Organic Nanoparticles Made from Quadrupolar Dyes for Two-Photon Bioimaging: Effect of End-Groups and Core. Molecules, 2022, 27, 2230.	1.7	Ο
59	Synthesis and Properties of α-Mangostin and Vadimezan Conjugates with Glucoheptoamidated and Biotinylated 3rd Generation Poly(amidoamine) Dendrimer, and Conjugation Effect on Their Anticancer and Anti-Nematode Activities. Pharmaceutics, 2022, 14, 606.	2.0	2
60	Vertical Orientation Probability Matters for Enhancing Nanoparticleâ€Macrophage Interaction and Efficient Phagocytosis. Small Methods, 2022, 6, e2101601.	4.6	4
61	Delivery of acetogenin-enriched Annona muricata Linn leaf extract by folic acid-conjugated and triphenylphosphonium-conjugated poly(glycerol adipate) nanoparticles to enhance toxicity against ovarian cancer cells. International Journal of Pharmaceutics, 2022, 618, 121636.	2.6	9
62	Microfluidic-Based Cationic Cholesterol Lipid siRNA Delivery Nanosystem: Highly Efficient In Vitro Gene Silencing and the Intracellular Behavior. International Journal of Molecular Sciences, 2022, 23, 3999.	1.8	2
63	Fluorescent Flavin/PVP-Coated Silver Nanoparticles: Design and Biological Performance. Journal of Fluorescence, 2022, , 1.	1.3	1
64	Pharmacoengineered Lipid Core–Shell Nanoarchitectonics to Influence Human Alveolar Macrophages Uptake for Drug Targeting Against Tuberculosis. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 3276-3291.	1.9	2
65	Overcoming doxorubicin resistance in cancer: siRNA-loaded nanoarchitectures for cancer gene therapy. Life Sciences, 2022, 298, 120463.	2.0	17
66	Lateral size homogeneous and doping degree controllable potassium-doped graphene quantum dots by mechanochemical reaction. Chemical Engineering Journal, 2022, 440, 135800.	6.6	4
67	Synthesis of Silver and Gold Nanoparticles: Chemical and Green Synthesis Method and Its Toxicity Evaluation against Pathogenic Bacteria Using the ToxTrak Test. Journal of Nanomaterials, 2021, 2021, 1-12.	1.5	10
68	Preparation of zinc oxide nanoparticles modified with galactose and assessment of their cytotoxic properties. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	1
69	Dissecting extracellular and intracellular distribution of nanoparticles and their contribution to therapeutic response by monochromatic ratiometric imaging. Nature Communications, 2022, 13, 2004.	5.8	13
70	Cell-surface glycosaminoglycans regulate the cellular uptake of charged polystyrene nanoparticles. Nanoscale, 2022, 14, 7350-7363.	2.8	4
71	Nanotechnology-Assisted Cell Tracking. Nanomaterials, 2022, 12, 1414.	1.9	8
72	Analysis of the In Vitro Toxicity of Nanocelluloses in Human Lung Cells as Compared to Multi-Walled Carbon Nanotubes. Nanomaterials, 2022, 12, 1432.	1.9	11
73	Macrophage-evading and tumor-specific apoptosis inducing nanoparticles for targeted cancer therapy. Acta Pharmaceutica Sinica B, 2023, 13, 327-343.	5.7	14
74	The interfacial interactions of nanomaterials with human serum albumin. Analytical and Bioanalytical Chemistry, 2022, 414, 4677-4684.	1.9	5

#	Article	IF	CITATIONS
75	Polystyrene micro and nano-particles induce metabolic rewiring in normal human colon cells: A risk factor for human health. Chemosphere, 2022, 303, 134947.	4.2	35
76	Cytotoxic screening and antibacterial activity of Withaferin A. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2022, 85, 685-698.	1.1	13
77	Multifunctional nanoparticles of sinomenine hydrochloride for treat-to-target therapy of rheumatoid arthritis via modulation of proinflammatory cytokines. Journal of Controlled Release, 2022, 348, 42-56.	4.8	19
78	Endocytosis Pathway Self-Regulation for Precise Image-Guided Therapy through an Enzyme-Responsive Modular Peptide Probe. Analytical Chemistry, 2022, 94, 7960-7969.	3.2	6
79	Kidney Functional Stages Influence the Role of PEG End-group on the Renal Accumulation and Distribution of PEGylated Nanoparticles. Nanoscale, 0, , .	2.8	2
80	3D nanoparticle superlocalization with a thin diffuser. Optics Letters, 2022, 47, 3079.	1.7	3
81	Polymersomesâ€Mediated Delivery of CSF1R Inhibitor to Tumor Associated Macrophages Promotes M2 to M1‣ike Macrophage Repolarization. Macromolecular Bioscience, 2022, 22, .	2.1	6
82	Administration Routes as Modulators of the Intrahepatic Distribution and Anti-Anemic Activity of Salicylic Acid/Fe3O4 Nanoparticles. Biomedicines, 2022, 10, 1213.	1.4	0
83	Bioactive 2D nanomaterials for neural repair and regeneration. Advanced Drug Delivery Reviews, 2022, 187, 114379.	6.6	41
84	The Synthesis and Properties of a New Carrier for Paclitaxel and Doxorubicin Based on the Amphiphilic Copolymer of <i>N</i> â€vinylâ€2â€pyrrolidone and Acrylic Acid. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	4
85	Optimization of Biomimetic, Leukocyte-Mimicking Nanovesicles for Drug Delivery Against Colorectal Cancer Using a Design of Experiment Approach. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	4
86	Modulating Fingolimod (FTY720) Anti-SARS-CoV-2 Activity Using a PLGA-Based Drug Delivery System. ACS Applied Bio Materials, 2022, 5, 3371-3383.	2.3	4
87	Doxorubicin-Loaded Core–Shell UiO-66@SiO2 Metal–Organic Frameworks for Targeted Cellular Uptake and Cancer Treatment. Pharmaceutics, 2022, 14, 1325.	2.0	26
88	Ivermectin Enhanced Antitumor Activity of Resiquimod in a Co-Loaded Squalene Emulsion. Journal of Pharmaceutical Sciences, 2022, 111, 3038-3046.	1.6	4
89	Enrichment Methods for Murine Liver Non-Parenchymal Cells Differentially Affect Their Immunophenotype and Responsiveness towards Stimulation. International Journal of Molecular Sciences, 2022, 23, 6543.	1.8	4
90	Understanding the role of surface interactions in the antibacterial activity of layered double hydroxide nanoparticles by atomic force microscopy. Nanoscale, 2022, 14, 10335-10348.	2.8	11
92	Polysaccharideâ€Polyplex Nanofilm Coatings Enhance Nanoneedleâ€Based Gene Delivery and Transfection Efficiency. Small, 2022, 18, .	5.2	6
93	Hyaluronic acid-entecavir conjugates-core/lipid-shell nanohybrids for efficient macrophage uptake and hepatotropic prospects. International Journal of Biological Macromolecules, 2022, 217, 731-747.	3.6	5

#	Article	IF	CITATIONS
94	Intracellular fate and immune response of porphyrin-based nano-sized metal-organic frameworks. Chemosphere, 2022, 307, 135680.	4.2	6
95	Versatile Protein Coronation Approach with Multiple Depleted Serum for Creating Biocompatible, Precision Nanomedicine. Small, 0, , 2202002.	5.2	0
96	An update on dual targeting strategy for cancer treatment. Journal of Controlled Release, 2022, 349, 67-96.	4.8	18
97	In-Situ TEM Studies on Nanoparticle Interactions with Bacterial Cells. Microscopy and Microanalysis, 2022, 28, 1104-1106.	0.2	1
98	Internalization study of nanosized zeolite crystals in human glioblastoma cells. Colloids and Surfaces B: Biointerfaces, 2022, 218, 112732.	2.5	4
99	Delivery process and effective design of vectors for cancer therapy. Journal of Materials Chemistry B, 2022, 10, 6896-6921.	2.9	8
100	Perfluoroalkyl-containing Compounds as a Tool for Drug Delivery Systems. , 2022, , 477-515.		2
101	How can we use the endocytosis pathways to design nanoparticle drug-delivery vehicles to target cancer cells over healthy cells?. Chemical Society Reviews, 2022, 51, 7531-7559.	18.7	27
102	Drug Delivery Systems with a "Tumor-Triggered―Targeting or Intracellular Drug Release Property Based on DePEGylation. Materials, 2022, 15, 5290.	1.3	3
103	Polymeric Carriers for Delivery of RNA Cancer Therapeutics. Non-coding RNA, 2022, 8, 58.	1.3	3
104	DNA Framework-Programmed Ligand Positioning to Modulate the Targeting Performance. ACS Applied Materials & Interfaces, 2022, 14, 36957-36965.	4.0	0
105	Engineered Macrophage-Membrane-Coated Nanoparticles with Enhanced PD-1 Expression Induce Immunomodulation for a Synergistic and Targeted Antiglioblastoma Activity. Nano Letters, 2022, 22, 6606-6614.	4.5	34
106	Robust strategies in nuclear-targeted cancer therapy based on functional nanomaterials. Materials and Design, 2022, 221, 110999.	3.3	9
107	Transdermal delivery system based on heparin-modified graphene oxide for deep transportation, tumor microenvironment regulation, and immune activation. Nano Today, 2022, 46, 101565.	6.2	8
108	Targeted drug delivery nanocarriers based on hyaluronic acid-decorated dendrimer encapsulating gold nanoparticles for ovarian cancer therapy. Materials Today Chemistry, 2022, 26, 101083.	1.7	4
109	Behavior of Citrate-Capped Ultrasmall Gold Nanoparticles on a Supported Lipid Bilayer Interface at Atomic Resolution. ACS Nano, 2022, 16, 17179-17196.	7.3	18
110	Delivery and assessment of a CRISPR/nCas9-based genome editing system on in vitro models of mucopolysaccharidoses IVA assisted by magnetite-based nanoparticles. Scientific Reports, 2022, 12, .	1.6	8
111	Controlling Nanoparticle Uptake in Innate Immune Cells with Heparosan Polysaccharides. Nano Letters, 2022, 22, 7119-7128.	4.5	11

#	Article	IF	CITATIONS
112	Therapeutic applications of nanomedicine in metabolic diseases by targeting the endothelium. QJM - Monthly Journal of the Association of Physicians, 0, , .	0.2	1
113	Quantum dots: The cutting-edge nanotheranostics in brain cancer management. Journal of Controlled Release, 2022, 350, 698-715.	4.8	15
114	Native PLGA nanoparticles regulate APP metabolism and protect neurons against β-amyloid toxicity: Potential significance in Alzheimer's disease pathology. International Journal of Biological Macromolecules, 2022, 219, 1180-1196.	3.6	9
115	A microfluidic serial dilutor (MSD): Design optimization and application to tuning of liposome nanoparticle preparation. Chemical Engineering Science, 2022, 263, 118080.	1.9	1
116	Hijacking the intrinsic vitamin B ₁₂ pathway for the oral delivery of nanoparticles, resulting in enhanced <i>in vivo</i> anti-leishmanial activity. Biomaterials Science, 2022, 10, 5669-5688.	2.6	4
117	Nuclear-targeted carbon quantum dot mediated CRISPR/Cas9 delivery for fluorescence visualization and efficient editing. Nanoscale, 2022, 14, 14645-14660.	2.8	5
118	Recent advances in nanotechnology approaches for non-viral gene therapy. Biomaterials Science, 2022, 10, 6862-6892.	2.6	15
119	The aspect ratio effect on the cytotoxicity of inert nano-particles flips depending on particle thickness, and is one of the reasons for the literature inconsistency. Nanoscale Advances, 2022, 4, 5257-5269.	2.2	1
120	Substrate stiffness reduces particle uptake by epithelial cells and macrophages in a size-dependent manner through mechanoregulation. Nanoscale, 2022, 14, 15141-15155.	2.8	9
121	Novel electrospun chitosan/PEO membranes for more predictive nanoparticle transport studies at biological barriers. Nanoscale, 2022, 14, 12136-12152.	2.8	2
122	Caveolae-dependent endocytosis mediates the cellular uptake of CdTe quantum dots in ovarian cancer cell lines. Research in Pharmaceutical Sciences, 2022, 17, 527.	0.6	0
124	PEG Conjugated Zein Nanoparticles for In Vivo Use. Pharmaceutics, 2022, 14, 1831.	2.0	2
125	Shall We Tune? From Core-Shell to Cloud Type Nanostructures in Heparin/Silica Hybrids. Polymers, 2022, 14, 3568.	2.0	6
126	Development of Polynucleotide-loaded Nanoparticles for the Regulation of Intracellular Nucleotide Levels. Chemistry Letters, 2022, 51, 1037-1039.	0.7	Ο
127	Peptide-based assembled nanostructures that can direct cellular responses. Biomedical Materials (Bristol), 2022, 17, 062002.	1.7	1
128	Ultrasound-Responsive Nanocarriers for Breast Cancer Chemotherapy. Micromachines, 2022, 13, 1508.	1.4	11
129	Fate of engineered nanomaterials at the human epithelial lung tissue barrier in vitro after single and repeated exposures. Frontiers in Toxicology, 0, 4, .	1.6	1
131	Advances in nanomaterials for the diagnosis and treatment of head and neck cancers: A review. Bioactive Materials, 2023, 25, 430-444.	8.6	8

#	Article	IF	CITATIONS
132	Direct Measurement of Surfactant-Mediated Picoforces among Nanoparticles in a Quasi-Two-Dimensional Environment. Langmuir, 0, , .	1.6	0
134	Ruxolitinib-loaded black phosphorus nanosheets actively target proximal tubule cells to ameliorate nephrotic syndrome by reducing inflammation and oxidative stress. Nano Today, 2022, 47, 101631.	6.2	2
135	A noncanonical endocytic pathway is involved in the internalization of 3 μm polystyrene beads into HeLa cells. Biomaterials Science, 2022, 10, 7093-7102.	2.6	1
136	NOAEL Cancer Therapy: Tumor Targetable Docetaxel-Inorganic Polymer Nanohybrid Prevents Drug-Induced Neutropenia. Journal of Materials Chemistry B, 0, , .	2.9	0
137	The stiffness-dependent tumor cell internalization of liquid metal nanoparticles. Nanoscale, 2022, 14, 16902-16917.	2.8	5
138	Lipid nanoparticles for delivery of RNA therapeutics: Current status and the role of <i>in vivo</i> imaging. Theranostics, 2022, 12, 7509-7531.	4.6	43
139	Transfer Phenomena of Nanoliposomes by Live Imaging of Primary Cultures of Cortical Neurons. Pharmaceutics, 2022, 14, 2172.	2.0	2
140	The feasibility of oral targeted drug delivery: Gut immune to particulates?. Acta Pharmaceutica Sinica B, 2023, 13, 2544-2558.	5.7	8
141	Targeted Selfâ€assembly of Renal Clearable Cu _{2â€} <i>_x</i> Se to Induce Lysosome Swelling for Multimodal Imaging Guided Photothermal/Chemodynamic Synergistic Therapy. Advanced Functional Materials, 2022, 32, .	7.8	14
142	Pitfalls in methods to study colocalization of nanoparticles in mouse macrophage lysosomes. Journal of Nanobiotechnology, 2022, 20, .	4.2	4
143	A Nanomedicine Structure–Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS Nano, 2022, 16, 17497-17551.	7.3	10
144	The mechanism of Hepatocyte-Targeting and safety profile of Phospholipid-Free small unilamellar vesicles. International Journal of Pharmaceutics, 2022, 628, 122269.	2.6	0
145	Responsive shape-shifting nanoarchitectonics and its application in tumor diagnosis and therapy. Journal of Controlled Release, 2022, 352, 600-618.	4.8	10
146	Neutrophil mediated drug delivery for targeted glioblastoma therapy: A comprehensive review. Biomedicine and Pharmacotherapy, 2022, 156, 113841.	2.5	10
147	Doxorubicin and tamoxifen loaded graphene oxide nanoparticle functionalized with chitosan and folic acid for anticancer drug delivery. Polymer Bulletin, 2023, 80, 2171-2185.	1.7	4
148	Immune Modifying Effect of Drug Free Biodegradable Nanoparticles on Disease Course of Experimental Autoimmune Neuritis. Pharmaceutics, 2022, 14, 2410.	2.0	3
149	Glial Cell Line-Derived Neurotrophic Factor-Loaded CMCht/PAMAM Dendrimer Nanoparticles for Peripheral Nerve Repair. Pharmaceutics, 2022, 14, 2408.	2.0	1
150	Gallic Acid–Triethylene Glycol Aptadendrimers Synthesis, Biophysical Characterization and Cellular Evaluation. Pharmaceutics, 2022, 14, 2456.	2.0	2

#	Article	IF	CITATIONS
151	DNAâ€Tetrahedra Coronaâ€Modified Hydrogel Microcapsules: "Smart―ATP―or microRNAâ€Responsive Dru Carriers. Small, 2022, 18, .	^{lg} 5.2	15
152	Engineering Multishelled Nanostructures Enables Stepwise Self-Degradability for Drug-Release Optimization. Nano Letters, 2022, 22, 9181-9189.	4.5	1
153	Plate reader spectroscopy as an alternative to atomic absorption spectroscopy for the assessment of nanoparticle cellular uptake. Heliyon, 2022, , e11595.	1.4	1
154	Efficiency and Safety of Dextran-PAMAM/siMMP-9 Complexes for Decreasing Matrix Metalloproteinase-9 Expression and Promoting Wound Healing in Diabetic Rats. Bioconjugate Chemistry, 2022, 33, 2398-2410.	1.8	2
155	Kaurenoic acid nanocarriers regulates cytokine production and inhibit breast cancer cell migration. Journal of Controlled Release, 2022, 352, 712-725.	4.8	5
156	Organelle-targeted therapies: a comprehensive review on system design for enabling precision oncology. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	35
157	Nanoparticles for super-resolution microscopy: intracellular delivery and molecular targeting. Chemical Society Reviews, 2022, 51, 9882-9916.	18.7	6
158	Unravelling the interactions of biodegradable dendritic nucleic acid carriers and neural cells. Biomaterials Science, 2023, 11, 1499-1516.	2.6	1
159	A pH/GSH dual responsive nanoparticle with relaxivity-amplification for magnetic resonance imaging and suppression of tumors and metastases. Nanoscale, 0, , .	2.8	2
160	Metal-polyphenol nanodots loaded hollow MnO2 nanoparticles with a "dynamic protection―property for enhanced cancer chemodynamic therapy. Journal of Colloid and Interface Science, 2023, 634, 836-851.	5.0	23
162	Targeting the activity of T cells by membrane surface redox regulation for cancer theranostics. Nature Nanotechnology, 2023, 18, 86-97.	15.6	24
163	Superparamagnetic Iron Oxide Nanoparticles and Curcumin Equally Promote Neuronal Branching Morphogenesis in the Absence of Nerve Growth Factor in PC12 Cells. Pharmaceutics, 2022, 14, 2692.	2.0	6
164	Polymeric Nanoparticles with Embedded Eu(III) Complexes as Molecular Probes for Temperature Sensing. Molecules, 2022, 27, 8813.	1.7	2
165	Aspirin curcumin ester loaded biomimetic nanodrug improves cognitive deficits in a mouse model of Alzheimer's disease by regulating M1/M2 microglial polarization. Materials Today Advances, 2022, 16, 100321.	2.5	1
166	Overcoming Cytosolic Delivery Barriers of Proteins Using Denatured Protein-Conjugated Mesoporous Silica Nanoparticles. ACS Applied Materials & amp; Interfaces, 2023, 15, 432-451.	4.0	5
167	Highly Effective Generation of Singlet Oxygen by an Imidazole-Linked Robust Photosensitizing Covalent Organic Framework. ACS Nano, 2022, 16, 21565-21575.	7.3	24
168	Prodrug Nanosensitizer Overcomes the Radiation Resistance of Hypoxic Tumor. ACS Applied Materials & Interfaces, 2022, 14, 56454-56470.	4.0	3
169	Carrier-Free Nanoplatform via Evoking Pyroptosis and Immune Response against Breast Cancer. ACS Applied Materials & Interfaces, 2023, 15, 452-468.	4.0	26

#	Article	IF	CITATIONS
170	Pharmaceutical Nanotechnology. Micro/Nano Technologies, 2023, , 179-283.	0.1	1
171	Rhenium(I) Block Copolymers Based on Polyvinylpyrrolidone: A Successful Strategy to Water-Solubility and Biocompatibility. Molecules, 2023, 28, 348.	1.7	0
172	Upconverting Nanoparticles as a New Bio-Imaging Strategy—Investigating Intracellular Trafficking of Endogenous Processes in Neural Tissue. International Journal of Molecular Sciences, 2023, 24, 1122.	1.8	3
173	A Novel Nanosafety Approach Using Cell Painting, Metabolomics, and Lipidomics Captures the Cellular and Molecular Phenotypes Induced by the Unintentionally Formed Metal-Based (Nano)Particles. Cells, 2023, 12, 281.	1.8	7
174	Nucleic acid drug vectors for diagnosis and treatment of brain diseases. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	19
175	Use of stimulatory responsive soft nanoparticles for intracellular drug delivery. Nano Research, 2023, 16, 6974-6990.	5.8	12
176	The role of cell membrane-coated nanoparticles as a novel treatment approach in glioblastoma. Frontiers in Molecular Biosciences, 0, 9, .	1.6	2
177	FU-coating pH-sensitive liposomes for improving the release of gemcitabine by endosome escape in pancreatic cancer cells. Journal of Drug Delivery Science and Technology, 2023, 80, 104135.	1.4	4
178	Nanoscale coordination polymers enabling antioxidants inhibition for enhanced chemodynamic therapy. Journal of Controlled Release, 2023, 354, 196-206.	4.8	11
179	Targeting EGFR and Monitoring Tumorigenesis of Human Lung Cancer Cells In Vitro and In Vivo Using Nanodiamond-Conjugated Specific EGFR Antibody. Pharmaceutics, 2023, 15, 111.	2.0	0
180	Nano-sized Metal Oxides and Their use as a Surface Disinfectant Against COVID-19: (Review and) Tj ETQq0 0 0 rg	gBT/Overl	ock 10 Tf 50
181	Nanosized metal–organic frameworks as unique platforms for bioapplications. Chemical Communications, 2023, 59, 2869-2887.	2.2	12
182	Membrane-mediated dimerization of spherocylindrical nanoparticles. Soft Matter, 2023, 19, 1499-1512.	1.2	3
183	Ligand free FeSn ₂ alloy nanoparticles for safe <i>T</i> ₂ -weighted MR imaging of <i>in vivo</i> lung tumors. Biomaterials Science, 2023, 11, 2177-2185.	2.6	1
184	Nanoparticle delivery through the BBB in central nervous system tuberculosis. , 2023, 9, 43-62.		1
185	Nanomaterial Endocytosis: Quantification of Adsorption and Ingestion Mechanisms. Magnetochemistry, 2023, 9, 37.	1.0	1
186	Interaction of nanoparticles and nanocomposite with plant and environment. , 2023, , 161-193.		3
187	Organosilica nanoparticles containing sodium borocaptate (BSH) provide a new perspectives for boron neutron capture therapy (BNCT): efficient cellular uptake and enhanced BNCT efficacy. Nanoscale Advances, 0, , .	2.2	4

#	Article	IF	CITATIONS
188	Emerging ultrasmall luminescent nanoprobes for <i>in vivo</i> bioimaging. Chemical Society Reviews, 2023, 52, 1672-1696.	18.7	27
189	Polydopamine nanoparticles coated with a metal-polyphenol network for enhanced photothermal/chemodynamic cancer combination therapy. International Journal of Biological Macromolecules, 2023, 238, 124088.	3.6	5
190	Pre-exposure to titanium or iron oxide nanoparticles suppresses the subsequent cellular uptake of gold nanoparticles. Science of the Total Environment, 2023, 875, 162491.	3.9	2
191	Platinum-based combination nanomedicines for cancer therapy. Current Opinion in Chemical Biology, 2023, 74, 102290.	2.8	4
192	Functionalization of graphene oxide quantum dots for anticancer drug delivery. Journal of Drug Delivery Science and Technology, 2023, 80, 104199.	1.4	3
193	Laser Ablated Albumin Functionalized Spherical Gold Nanoparticles Indicated for Stem Cell Tracking. Materials, 2023, 16, 1034.	1.3	0
194	Dual-Modal Apoptosis Assay Enabling Dynamic Visualization of ATP and Reactive Oxygen Species in Living Cells. Analytical Chemistry, 2023, 95, 3507-3515.	3.2	6
195	<scp>Liposome–trimethyl</scp> chitosan nanoparticles codeliver insulin and <scp>siVEGF</scp> to treat corneal alkali burns by inhibiting ferroptosis. Bioengineering and Translational Medicine, 2023, 8, .	3.9	2
196	X-ray Activated Nanoplatforms for Deep Tissue Photodynamic Therapy. Nanomaterials, 2023, 13, 673.	1.9	5
197	Encapsulation of resveratrol within size-controlled nanoliposomes: Impact on solubility, stability, cellular permeability, and oral bioavailability. Colloids and Surfaces B: Biointerfaces, 2023, 224, 113205.	2.5	9
198	Singlet Molecular Oxygen Generation via Unexpected Emission Color-Tunable CdSe/ZnS Nanocrystals for Applications in Photodynamic Therapy. ACS Applied Nano Materials, 2023, 6, 3767-3780.	2.4	1
199	Cellular Uptake of Silica Particles Influences EGFR Signaling Pathway and is Affected in Response to EGF. International Journal of Nanomedicine, 0, Volume 18, 1047-1061.	3.3	3
200	Antiâ€HER2 scFvâ€nCyt <i>c</i> â€Modified Lipidâ€Encapsulated Oxygen Nanobubbles Prepared with Bulk Nanobubble Water for Inducing Apoptosis and Improving Photodynamic Therapy. Small, 0, , 2206091.	5.2	0
202	Quantitative Ratiometric Biosensors Based on Fluorescent Ferrocene-Modified Histidine Dipeptide Nanoassemblies. Analytical Chemistry, 2023, 95, 5053-5060.	3.2	3
203	Drug-Loading Content Influences Cellular Uptake of Polymer-Coated Nanocellulose. Molecular Pharmaceutics, 2023, 20, 2017-2028.	2.3	1
204	The enhanced generation of motor neurons from mESCs by MgAl layered double hydroxide nanoparticles. Biomedical Materials (Bristol), 2023, 18, 034101.	1.7	1
205	<i>In Situ</i> Microscopic Studies on the Interaction of Multi-Principal Element Nanoparticles and Bacteria. ACS Nano, 2023, 17, 5880-5893.	7.3	6
206	Metallic and polymeric green nanoplatforms in oncology. Journal of Applied Microbiology, 2023, 134, .	1.4	1

#	Article	IF	CITATIONS
207	The steep road to nonviral nanomedicines: Frequent challenges and culprits in designing nanoparticles for gene therapy. Beilstein Journal of Nanotechnology, 0, 14, 351-361.	1.5	1
208	Polyphotosensitizerâ€Based Nanoparticles with Michael Addition Acceptors Inhibiting GST Activity and Cisplatin Deactivation for Enhanced Chemotherapy and Photodynamic Immunotherapy. Advanced Science, 2023, 10, .	5.6	6
209	Caveolin-Mediated Internalization of Fmoc-FF Nanogels in Breast Cancer Cell Lines. Pharmaceutics, 2023, 15, 1026.	2.0	5
210	Boron Dopants in Red-Emitting B and N Co-Doped Carbon Quantum Dots Enable Targeted Imaging of Lysosomes. ACS Applied Materials & Interfaces, 2023, 15, 17045-17053.	4.0	16
211	Bone regeneration strategies based on organelle homeostasis of mesenchymal stem cells. Frontiers in Endocrinology, 0, 14, .	1.5	0
212	Evaluation the toxicity of gold nanoparticles derived fungal biomass and plant materials through chemical and green methodologies. Biomass Conversion and Biorefinery, 0, , .	2.9	0
213	Defect-free graphene enhances enzyme delivery to fibroblasts derived from patients with lysosomal storage disorders. Nanoscale, 2023, 15, 9348-9364.	2.8	2
214	Non-Viral Carriers for Nucleic Acids Delivery: Fundamentals and Current Applications. Life, 2023, 13, 903.	1.1	6
216	Intranasal Pathway for Nanoparticles to Enter the Central Nervous System. Nano Letters, 2023, 23, 5381-5390.	4.5	5
217	Nonâ€Viral Nucleic Acid Delivery System for RNA Therapeutics. Advanced Therapeutics, 2023, 6, .	1.6	2
218	Insights into Gold Nanoparticles Possibilities for Diagnosis and Treatment of the Head and Neck Upper Aerodigestive Tract Cancers. Cancers, 2023, 15, 2080.	1.7	3
219	Nanocellulose: a review on preparation routes and applications in functional materials. Cellulose, 2023, 30, 4115-4147.	2.4	17
220	Iron oxide nanoparticles carried by probiotics for iron absorption: a systematic review. Journal of Nanobiotechnology, 2023, 21, .	4.2	0
221	Multifunctional ZnO nanostructures: a next generation nanomedicine for cancer therapy, targeted drug delivery, bioimaging, and tissue regeneration. Nanotechnology, 2023, 34, 282003.	1.3	2
222	Influence of structural dynamics on cell uptake investigated with single-chain polymeric nanoparticles. CheM, 2023, 9, 1562-1577.	5.8	2
223	Application of nanoparticles in the diagnosis and treatment of chronic kidney disease. Frontiers in Medicine, 0, 10, .	1.2	1
224	Quantifying Intracellular Nanoparticle Distributions with Three-Dimensional Super-Resolution Microscopy. ACS Nano, 2023, 17, 8376-8392.	7.3	2
225	Nano–bio interactions of upconversion nanoparticles at subcellular level: biodistribution and cytotoxicity. Nanomedicine, 2023, 18, 233-258.	1.7	1

#	Article	IF	CITATIONS
226	Nanoparticulates. , 2023, , 797-838.		0
228	Silica NPs–Cytotoxicity Cross-Talk: Physicochemical Principles and Cell Biology Responses. Silicon, 0, ,	1.8	0
266	Nanotechnology in pest management: advantages, applications, and challenges. International Journal of Tropical Insect Science, 2023, 43, 1387-1399.	0.4	8
276	mRNA-Based Nanomedicine: A New Strategy for Treating Infectious Diseases and Beyond. European Journal of Drug Metabolism and Pharmacokinetics, 2023, 48, 515-529.	0.6	1
286	Magnetic materials-based medical devices for diagnosis, surgery, and therapy. , 2023, , 27-80.		0
316	The Curie temperature: a key playmaker in self-regulated temperature hyperthermia. Journal of Materials Chemistry B, 0, , .	2.9	1
337	Entry and exit of extracellular vesicles to and from the blood circulation. Nature Nanotechnology, 0, , .	15.6	4
362	Connexin-Containing Vesicles for Drug Delivery. AAPS Journal, 2024, 26, .	2.2	0
369	Nanomedicine. , 2024, , 267-296.		0
370	Introduction to magnetic nanosystems: Classifications, structure, properties, biological interactions, and diagnostic applications. , 2024, , 1-41.		0
379	Chiral nanomaterials in tissue engineering. Nanoscale, 2024, 16, 5014-5041.	2.8	0
391	Molecular mechanisms of nanomaterial interaction with plants. , 2024, , 77-93.		0