Characterizing the Air Emissions, Transport, and Depos Substances from a Fluoropolymer Manufacturing Facili

Environmental Science & amp; Technology 55, 862-870

DOI: 10.1021/acs.est.0c06580

Citation Report

#	Article	IF	CITATIONS
1	External and internal human exposure to PFOA and HFPOs around a mega fluorochemical industrial park, China: Differences and implications. Environment International, 2021, 157, 106824.	10.0	32
2	Per- and Polyfluoroalkyl Substances (PFAS): Significance and Considerations within the Regulatory Framework of the USA. International Journal of Environmental Research and Public Health, 2021, 18, 11142.	2.6	29
3	A Comprehensive Statewide Spatiotemporal Stream Assessment of Per- and Polyfluoroalkyl Substances (PFAS) in an Agricultural Region of the United States. Environmental Science and Technology Letters, 2021, 8, 981-988.	8.7	20
4	What difference can drop-in substitution actually make? A life cycle assessment of alternative water repellent chemicals. Journal of Cleaner Production, 2021, 329, 129661.	9.3	7
5	PFAS Molecules: A Major Concern for the Human Health and the Environment. Toxics, 2022, 10, 44.	3.7	93
6	Human-Health Impacts of Controlling Secondary Air Pollution Precursors. Environmental Science and Technology Letters, 2022, 9, 96-101.	8.7	22
7	Performance Evaluation of the Meteorology and Air Quality Conditions From Multiscale WRF MAQ Simulations for the Long Island Sound Tropospheric Ozone Study (LISTOS). Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	16
8	Per- and polyfluoroalkyl substances in the environment. Science, 2022, 375, eabg9065.	12.6	396
9	Utilizing Pine Needles to Temporally and Spatially Profile Per- and Polyfluoroalkyl Substances (PFAS). Environmental Science & Technology, 2022, 56, 3441-3451.	10.0	26
10	Per- and polyfluoroalkyl substances (PFAS) in river discharge: Modeling loads upstream and downstream of a PFAS manufacturing plant in the Cape Fear watershed, North Carolina. Science of the Total Environment, 2022, 831, 154763.	8.0	23
11	Fate of Per- and Polyfluoroalkyl Substances from Durable Water-Repellent Clothing during Use. Environmental Science & Technology, 2022, 56, 5886-5897.	10.0	19
12	Occurrence, Spatial Distribution, and Sources of Pfass in the Water and Sediment from Lakes in the Tibetan Plateau. SSRN Electronic Journal, 0, , .	0.4	0
13	Improved Tandem Mass Spectrometry Detection and Resolution of Low Molecular Weight Perfluoroalkyl Ether Carboxylic Acid Isomers. Environmental Science and Technology Letters, 2022, 9, 747-751.	8.7	3
14	Per―and polyfluoroalkyl substances (PFAS) exposure through munitions in the Russia–Ukraine conflict. Integrated Environmental Assessment and Management, 2023, 19, 376-381.	2.9	3
15	Per―and Polyfluoroalkyl Substances (PFAS) in Subsurface Environments: Occurrence, Fate, Transport, and Research Prospect. Reviews of Geophysics, 2022, 60, .	23.0	29
16	PFAS concentrations and deposition in precipitation: An intensive 5-month study at National Atmospheric Deposition Program – National trends sites (NADP-NTN) across Wisconsin, USA. Atmospheric Environment, 2022, 291, 119368.	4.1	14
17	Exploring controls on perfluorocarboxylic acid (PFCA) gas–particle partitioning using a model with observational constraints. Environmental Sciences: Processes and Impacts, 2023, 25, 264-276.	3.5	2
18	Evaluation of iodide chemical ionization mass spectrometry for gas and aerosol-phase per- and polyfluoroalkyl substances (PFAS) analysis. Environmental Sciences: Processes and Impacts, 2023, 25, 277-287.	3.5	3

#	Article	IF	Citations
19	Supramolecular assemblies of a newly developed indole derivative for selective adsorption and photo-destruction of perfluoroalkyl substances. Water Research, 2022, 225, 119147.	11.3	6
20	Occurrence, spatial distribution, and sources of PFASs in the water and sediment from lakes in the Tibetan Plateau. Journal of Hazardous Materials, 2023, 443, 130170.	12.4	12
21	Legacy and emerging airborne per- and polyfluoroalkyl substances (PFAS) collected on PM _{2.5} filters in close proximity to a fluoropolymer manufacturing facility. Environmental Sciences: Processes and Impacts, 2022, 24, 2272-2283.	3.5	3
22	Vital Environmental Sources for Multitudinous Fluorinated Chemicals: New Evidence from Industrial Byproducts in Multienvironmental Matrices in a Fluorochemical Manufactory. Environmental Science & Technology, 2022, 56, 16789-16800.	10.0	16
23	Occurrence of perfluoroalkyl substances in the environment compartments near a mega fluorochemical industry: Implication of specific behaviors and emission estimation. Journal of Hazardous Materials, 2023, 445, 130473.	12.4	10
24	Mobilization of Per- and Polyfluoroalkyl Substances (PFAS) in Soils: A Review. Current Pollution Reports, 2022, 8, 422-444.	6.6	5
25	Per- and polyfluoroalkyl substances (PFASs) registered under REACH—What can we learn from the submitted data and how important will mobility be in PFASs hazard assessment?. Science of the Total Environment, 2023, 877, 162618.	8.0	2
26	Environmental and health impacts of PFAS: Sources, distribution and sustainable management in North Carolina (USA). Science of the Total Environment, 2023, 878, 163123.	8.0	21
27	Polyfluoroalkyl substances requiring a renewed focus on groundwaterâ€surface water interactions. Ground Water Monitoring and Remediation, 2023, 43, 14-31.	0.8	1
28	Tubing material considerably affects measurement delays of gas-phase oxygenated per- and polyfluoroalkyl substances. Journal of the Air and Waste Management Association, 2023, 73, 335-344.	1.9	3
29	Occurrence of per- and polyfluoroalkyl substances (PFAS) in soil: Sources, fate, and remediation. , 2023, 1, 100004.		15
30	Characterization of PFAS air emissions from thermal application of fluoropolymer dispersions on fabrics. Journal of the Air and Waste Management Association, 2023, 73, 533-552.	1.9	2
31	Tissue Bioconcentration Pattern and Biotransformation of Per-Fluorooctanoic Acid (PFOA) in Cyprinus carpio (European Carp)—An Extensive In Vivo Study. Foods, 2023, 12, 1423.	4.3	3
32	Thermal Decomposition of Two Gaseous Perfluorocarboxylic Acids: Products and Mechanisms. Environmental Science & Technology, 2023, 57, 6179-6187.	10.0	11
33	Linking gas, particulate, and toxic endpoints to air emissions in the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM). Atmospheric Chemistry and Physics, 2023, 23, 5043-5099.	4.9	6
34	Influence of convective and stratiform precipitation types on per- and polyfluoroalkyl substance concentrations in rain. Science of the Total Environment, 2023, 890, 164051.	8.0	1
35	Domestic Dogs and Horses as Sentinels of Per- and Polyfluoroalkyl Substance Exposure and Associated Health Biomarkers in Gray's Creek North Carolina. Environmental Science & Technology, 2023, 57, 9567-9579.	10.0	4
36	Evidence of large-scale deposition of airborne emissions of per- and polyfluoroalkyl substances (PFASs) near a fluoropolymer production plant in an urban area. Chemosphere, 2023, 337, 139407.	8.2	7

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
37	Predictions of PFAS regional-scale atmospheric deposition and ambient air exposure. Science of the Total Environment, 2023, 902, 166256.	8.0	0
38	Production of perfluoroalkyl acids (PFAAs) from precursors in contaminated agricultural soils: Batch and leaching experiments. Science of the Total Environment, 2023, 902, 166555.	8.0	3
39	Prediction of 35 Target Per- and Polyfluoroalkyl Substances (PFASs) in California Groundwater Using Multilabel Semisupervised Machine Learning. ACS ES&T Water, 2024, 4, 969-981.	4.6	1
41	Emission inventory of PFASs and other fluorinated organic substances for the fluoropolymer production industry in Europe. Environmental Sciences: Processes and Impacts, 2024, 26, 269-287.	3.5	1
42	Evaluation of commercial nanofiltration and reverse osmosis membrane filtration to remove perâ€and polyfluoroalkyl substances (PFAS): Effects of transmembrane pressures and water matrices. Water Environment Research, 2024, 96, .	2.7	0
43	Estimated scale of costs to remove PFAS from the environment at current emission rates. Science of the Total Environment, 2024, 918, 170647.	8.0	0
45	Characterizing Volatile Emissions and Combustion Byproducts from Aqueous Film-Forming Foams Using Online Chemical Ionization Mass Spectrometry. Environmental Science & Technology, 2024, 58, 3942-3952.	10.0	0
46	Exploring the Potential Link between PFAS Exposure and Endometrial Cancer: A Review of Environmental and Sociodemographic Factors. Cancers, 2024, 16, 983.	3.7	0
47	New insights from an eight-year study on per- and polyfluoroalkyl substances in an urban terrestrial ecosystem. Environmental Pollution, 2024, 347, 123735.	7.5	0
48	Overview of Per- and Polyfluoroalkyl Substances (PFAS), Their Applications, Sources, and Potential Impacts on Human Health. Pollutants, 2024, 4, 136-152.	2.1	0
49	Perfluorooctanesulfonic Acid Alters the Plant's Phosphate Transport Gene Network and Exhibits Antagonistic Effects on the Phosphate Uptake. Environmental Science & Technology, 2024, 58, 5405-5418.	10.0	0