Entropy generation and MHD analysis of a nanofluid wi

International Journal of Numerical Methods for Heat and Fluid 31, 2698-2714

DOI: 10.1108/hff-11-2020-0704

Citation Report

#	Article	IF	CITATIONS
1	MHD heat transfer and entropy production of an Al ₂ 0 ₃ â€water nanofluid in a horizontal cylinder. Heat Transfer, 2021, 50, 4892-4907.	1.7	2
2	Experimental study of a hemispherical three-dimensional solar collector operating with silver-water nanofluid. Sustainable Energy Technologies and Assessments, 2021, 44, 101043.	1.7	21
3	Entropy generation and heat transfer analysis of alumina and carbon nanotubes based hybrid nanofluid inside a cavity. Physica Scripta, 2021, 96, 085210.	1.2	35
4	Irreversibility analysis of carbon nanotubes subject to rotating frame. Physica Scripta, 2021, 96, 095209.	1.2	O
5	Entropy Analysis of the Peristaltic Flow of Hybrid Nanofluid Inside an Elliptic Duct with Sinusoidally Advancing Boundaries. Entropy, 2021, 23, 732.	1.1	35
6	Shape effect of nanoparticles on MHD nanofluid flow over a stretching sheet in the presence of heat source/sink with entropy generation. International Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 1643-1663.	1.6	34
7	Effects of using a porous disk on the dynamic features of phase change process with PCM integrated circular pipe during nano-liquid forced convection in discharging operation mode. Journal of the Taiwan Institute of Chemical Engineers, 2021, 124, 381-390.	2.7	17
8	Assessment of solar chimney combined with phase change materials. Journal of the Taiwan Institute of Chemical Engineers, 2021, 124, 341-350.	2.7	23
9	Multiple slips impact in the MHD hybrid nanofluid flow with Cattaneo–Christov heat flux and autocatalyticÂchemical reaction. Scientific Reports, 2021, 11, 14625.	1.6	45
10	Selecting the best nanofluid type for A photovoltaic thermal (PV/T) system based on reliability, efficiency, energy, economic, and environmental criteria. Journal of the Taiwan Institute of Chemical Engineers, 2021, 124, 351-358.	2.7	78
11	Thermal-natural convection and entropy production behavior of hybrid nanoliquid flow under the effects of magnetic field through a porous wavy cavity embodies three circular cylinders. Journal of the Taiwan Institute of Chemical Engineers, 2021, 124, 162-173.	2.7	70
12	Thermogravitational convection of powerâ€law nanofluid in a cavity with a heatâ€generated section on the bottom wall. Mathematical Methods in the Applied Sciences, 2023, 46, 11479-11494.	1.2	8
13	Applying Bayesian Markov chain Monte Carlo (MCMC) modeling to predict the melting behavior of phase change materials. Journal of Energy Storage, 2022, 45, 103570.	3.9	11
14	Heat and mass transport performance of MHD elasticoâ€viscous fluid flow over a vertically oriented magnetized surface with magnetic and thermo diffusions. Heat Transfer, 2022, 51, 2258-2278.	1.7	10
15	Numerical study on the parabolic flow of MHD fluid past a vertical plate in a porous medium. Heat Transfer, 2022, 51, 3418-3430.	1.7	8
16	How do artificial bacteria behave in magnetized nanofluid with variable thermal conductivity: application of tumor reduction and cancer cells destruction. International Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 2982-3006.	1.6	6
17	Analysis of Metallic Nanoparticles (Cu, Al2O3, and SWCNTs) on Magnetohydrodynamics Water-Based Nanofluid through a Porous Medium. Journal of Mathematics, 2022, 2022, 1-12.	0.5	9
18	Characterization of the Induced Magnetic Field on Third-Grade Micropolar Fluid Flow Across an Exponentially Stretched Sheet. Frontiers in Physics, 0, 10 , .	1.0	4

#	Article	IF	CITATIONS
19	Analysis of Energy Loss Characteristics of Vertical Axial Flow Pump Based on Entropy Production Method under Partial Conditions. Entropy, 2022, 24, 1200.	1.1	6
20	Thermal and solutal energy transport analysis in entropy generation of hybrid nanofluid flow over a vertically rotating cylinder. Frontiers in Physics, 0, 10, .	1.0	6
21	Peristaltic flow of chemically reactive Carreau-Yasuda nanofluid with modified Darcy's expression. Materials Today Communications, 2022, 33, 104532.	0.9	12
22	Effect of Temperature Dependent Sink on Peristaltic Transport in a Differentially Heated Vertical Annulus Filled with a Porous Material. Journal of Computational and Theoretical Transport, 0, , 1-21.	0.3	0
23	On magnetohydrodynamics Powell–Eyring fluid with Cattaneo–Christov heat flux over a curved surface. International Journal of Modern Physics B, 2023, 37, .	1.0	3
24	Test and Numerical Simulation of Pressure Pulsation under the Forward and Reverse Working Conditions of a Horizontal Axial Flow Pump. Applied Sciences (Switzerland), 2022, 12, 12956.	1.3	O
25	Thermal analysis and entropy generation of magnetic Eyring-Powell nanofluid with viscous dissipation in a wavy asymmetric channel. International Journal of Numerical Methods for Heat and Fluid Flow, 2023, 33, 1609-1636.	1.6	41
26	Thermophysical properties prediction of carbon-based nano-enhanced phase change material's using various machine learning methods. Journal of the Taiwan Institute of Chemical Engineers, 2023, 148, 104662.	2.7	13
27	Transient heat transfer and electro-osmotic flow of Carreauâ€"Yasuda non-Newtonian fluid through a rectangular microchannel. International Journal of Numerical Methods for Heat and Fluid Flow, 2023, 33, 2439-2454.	1.6	2