Comparison of Morphometric Features, Unaka Mountai and Dartmoor, England

Bulletin of the Geological Society of America 73, 17 DOI: 10.1130/0016-7606(1962)73[17:comfum]2.0.co;2

Citation Report

#	Article	IF	CITATIONS
1	The origin of New Zealand feral (fine-textured) relief. New Zealand Journal of Geology, and Geophysics, 1962, 5, 269-270.	1.8	6
2	Development of fine-textured landscape relief in temperate pluvial climates. New Zealand Journal of Geology, and Geophysics, 1963, 6, 528-533.	1.8	8
3	The control of drainage density. New Zealand Journal of Geology, and Geophysics, 1964, 7, 348-352.	1.8	24
4	Dry valleys and the composition of the drainage net. Journal of Hydrology, 1966, 4, 327-340.	5.4	30
5	THE EFFECT OF CLIMATE ON DRAINAGE DENSITY AND STREAMFLOW. International Association of Scientific Hydrology Bulletin, 1966, 11, 62-69.	0.2	24
6	QUALIFYING RELIEF TERMS. Professional Geographer, 1968, 20, 326-332.	1.8	6
7	THE VARIATION OF DRAINAGE DENSITY WITHIN A CATCHMENT. International Association of Scientific Hydrology Bulletin, 1968, 13, 61-68.	0.2	118
8	Geomorphology—a study which spans the geology/geography interface. Journal of the Geological Society, 1971, 127, 471-476.	2.1	4
9	DRAINAGE DENSITIES AND SEDIMENT YIELDS IN EASTERN AUSTRALIA. Geographical Research, 1972, 10, 19-41.	0.6	25
10	A stream length study. Water Resources Research, 1973, 9, 1454-1461.	4.2	73
11	The Influence of Scale in Climatic Geomorphology: A Case Study of Drainage Density in West Malaysia. Geografiska Annaler, Series A: Physical Geography, 1973, 55, 107-115.	1.5	9
12	Bifurcation Ratio - A Useless Index?. New Zealand Geographer, 1974, 30, 166-171.	0.9	2
13	Dominant geomorphic events in landform evolution. Bulletin of Engineering Geology and the Environment, 1974, 9, 85-89.	3.5	34
14	Geomorphometric Parameters: A Review and Evaluation. Geografiska Annaler, Series A: Physical Geography, 1975, 57, 165-177.	1.5	56
15	Modelling drainage headwater development. Earth Surfaces Processes, 1978, 3, 233-241.	0.7	8
16	Drainage density and streamflow: A closer look. Water Resources Research, 1978, 14, 1183-1187.	4.2	33
17	Drainage basin morphometry. Progress in Physical Geography, 1978, 2, 1-35.	3.2	51
18	Drainage Network Volumes and Precipitation in Britain. Transactions of the Institute of British Geographers, 1979, 4, 1.	2.9	12

		CITATION REPORT	
#	Article	IF	CITATIONS
19	Prediction of drainage density from surrogate measures. Water Resources Research, 1979, 15, 43	5-442. 4.2	4
20	The permanence of stream networks in Britain. Earth Surfaces Processes, 1980, 5, 47-60.	0.7	24
21	Formation and controls of channel networks. Progress in Physical Geography, 1980, 4, 211-239.	3.2	277
22	Drainage density as an index of climatic geomorphology. Journal of Hydrology, 1981, 50, 147-154	. 5.4	22
23	The dependence of drainage density on climate and geomorphology. Hydrological Sciences Journa 1982, 27, 129-137.	al, 2.6	21
24	Drainage density in relation to precipitation intensity in the U.S.A Journal of Hydrology, 1984, 75 383-388.	, 5.4	36
25	Channel Networks: A Geomorphological Perspective. Water Resources Research, 1984, 20, 161-1	88. 4.2	278
26	The Noon Hill Flash Floods; July 17th 1983. Hydrological and Geomorphological Aspects of a Majo Formative Event in an Upland Landscape. Transactions of the Institute of British Geographers, 198 105.	r 86, 11, 2.9	42
27	Hill slopes and hollows. Nature, 1988, 336, 201-201.	27.8	4
29	Drainage Density and Relative Relief in Humid Steep Mountains with Frequent Slope Failure. Earth Surface Processes and Landforms, 1997, 22, 107-120.	2.5	131
30	Use of geomorphological units to improve drainage network extraction from a DEM. International Journal of Applied Earth Observation and Geoinformation, 1999, 1, 187-195.	2.8	16
31	A stochastic approach to modeling the role of rainfall variability in drainage basin evolution. Wate Resources Research, 2000, 36, 1953-1964.	r 4.2	276
32	Statistical analysis of drainage density from digital terrain data. Geomorphology, 2001, 36, 187-20	02. 2.6	204
33	Geomorphic response to seasonal variations in rainfall in the Southwest United States. Bulletin of the Geological Society of America, 2004, 116, 606.	3.3	36
34	Fluvial origin of the valley system in northern Victoria Land (Antarctica) from quantitative geomorphic analysis. Bulletin of the Geological Society of America, 2005, 117, 212.	3.3	46
35	Mountain hazards. , 2010, , 33-48.		12
36	Drainage morphometry and its influence on landforms in volcanic terrain, Central Anatolia, Turkey Procedia, Social and Behavioral Sciences, 2011, 19, 732-740.	. 0.5	22
37	Geographic information system–based morphometric characterization of sub-watersheds of Meenachil river basin, Kottayam district, Kerala, India. Geocarto International, 2012, 27, 661-684.	3.5	38

CITATION REPORT

#	Article	IF	CITATIONS
38	Morphometry Governs the Dynamics of a Drainage Basin: Analysis and Implications. Geography Journal, 2014, 2014, 1-14.	0.8	30
39	Vegetation-precipitation controls on Central Andean topography. Journal of Geophysical Research F: Earth Surface, 2014, 119, 1354-1375.	2.8	26
40	Impact of draining hilly lands on runoff and onâ€site erosion: a case study from humid Ethiopia. Earth Surface Processes and Landforms, 2016, 41, 513-525.	2.5	8
41	The relationship between drainage density, erosion rate, and hilltop curvature: Implications for sediment transport processes. Journal of Geophysical Research F: Earth Surface, 2016, 121, 1724-1745.	2.8	44
42	Targeting flash flood potential areas using remotely sensed data and GIS techniques. Natural Hazards, 2017, 85, 19-37.	3.4	49
43	Digital Elevation Models in Geomorphology. , 2017, , .		11
44	Drainage morphometric analysis for assessing form and processes of the watersheds of Pachamalai hills and its adjoinings, Central Tamil Nadu, India. Applied Water Science, 2018, 8, 1.	5.6	42
45	Mapping of groundwater potential zones using the fuzzy analytic hierarchy process and geospatial technique. Geocarto International, 2021, 36, 2323-2344.	3.5	46
46	Watersheds Characteristics and Prioritization Using Morphometric Parameters and Fuzzy Analytical Hierarchal Process (FAHP): A Part of Lower Subansiri Sub-Basin. Journal of the Indian Society of Remote Sensing, 2020, 48, 473-496.	2.4	23
47	A dynamic river network method for the prediction of floods using a parsimonious rainfall-runoff model. Hydrology Research, 2020, 51, 146-168.	2.7	7
48	Morphometric attributes-based soil erosion susceptibility mapping in Dnyanganga watershed of India using individual and ensemble models. Environmental Earth Sciences, 2020, 79, 1.	2.7	17
49	Frequency of boulders transport during large floods in hyperarid areas using paleoflood analysis – An example from the Negev Desert, Israel. Earth-Science Reviews, 2020, 202, 103086.	9.1	19
51	PROGRESS IN GEOMORPHOLOGY. , 1969, , 13-26.		1
52	History of Groundwater Hydrology. , 2006, , 1-1-1-39.		0
53	Quantitative stream network analysis for assessing form and hydrological processes of the watersheds of Kolli hills, Tamil Nadu, India. Arabian Journal of Geosciences, 2021, 14, 1.	1.3	1
54	A GIS based Fuzzy-AHP for delineating groundwater potential zones in tropical river basin, southern part of India. Geosystems and Geoenvironment, 2022, 1, 100093.	3.2	15
55	Impact of geomorphometric parameters on the occurrence and distribution of landslides in Yamuna River Basin, North-Western Himalaya, India. Journal of Mountain Science, 2022, 19, 2374-2396.	2.0	2
56	Drainage Basin Characteristics of Dhund River Basin, Eastern Rajasthan India, Using Remote Sensing and GIS Techniques. Journal of Geographic Information System, 2022, 14, 347-363.	0.5	0

		CITATION	CITATION REPORT	
#	Article		IF	CITATIONS
57	Insights into the morphometric characteristics of the Himalayan River using remote sensing and GIS techniques: a case study of Saryu basin, Uttarakhand, India. Applied Geomatics, 2022, 14, 707-730.		2.5	5
58	Modelling of the Himalayan Mountain river basin through hydro-morphological and con factor-based approaches using geoinformatics tools. Modeling Earth Systems and Envir 9, 3053-3084.	npound onment, 2023,	3.4	5
59	Morphometric study of selected river basins from the Meghalaya Plateau — implicatic hydrodynamics of the eastern part of Indian subcontinent. Arabian Journal of Geoscienc	ns for the ces, 2023, 16, .	1.3	1
60	A robust channel head extraction method based on highâ€resolution topographic conv for both slowly and fastly eroding landscapes. Journal of Geophysical Research F: Earth	ergence, suitable Surface, 0, , .	2.8	0