Organs-on-chips: into the next decade

Nature Reviews Drug Discovery 20, 345-361 DOI: 10.1038/s41573-020-0079-3

Citation Report

#	Article	IF	CITATIONS
1	Modelling Neuromuscular Diseases in the Age of Precision Medicine. Journal of Personalized Medicine, 2020, 10, 178.	1.1	4
2	Is microfluidics the "assembly line―for CRISPR-Cas9 gene-editing?. Biomicrofluidics, 2020, 14, 061301.	1.2	4
3	A New 3D Cultured Liver Chip and Real-Time Monitoring System Based on Microfluidic Technology. Micromachines, 2020, 11, 1118.	1.4	5
4	Microfluidic and Microscale Assays to Examine Regenerative Strategies in the Neuro Retina. Micromachines, 2020, 11, 1089.	1.4	6
5	Microfluidic Tumor-on-a-Chip Model to Study Tumor Metabolic Vulnerability. International Journal of Molecular Sciences, 2020, 21, 9075.	1.8	16
6	Application of In Vitro Metabolism Activation in High-Throughput Screening. International Journal of Molecular Sciences, 2020, 21, 8182.	1.8	24
7	Human biomimetic liver microphysiology systems in drug development and precision medicine. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 252-268.	8.2	54
10	Tissue Chips and Microphysiological Systems for Disease Modeling and Drug Testing. Micromachines, 2021, 12, 139.	1.4	11
11	The vascular niche in next generation microphysiological systems. Lab on A Chip, 2021, 21, 3244-3262.	3.1	13
12	Models of kidney glomerulus derived from human-induced pluripotent stem cells. , 2021, , 329-370.		1
13	Microfluidic technologies for immunotherapy studies on solid tumours. Lab on A Chip, 2021, 21, 2306-2329.	3.1	19
14	Multicellular 3D Models to Study Tumour-Stroma Interactions. International Journal of Molecular Sciences, 2021, 22, 1633.	1.8	34
15	Microfluidic and Organ-on-a-Chip Approaches to Investigate Cellular and Microenvironmental Contributions to Cardiovascular Function and Pathology. Frontiers in Bioengineering and Biotechnology, 2021, 9, 624435.	2.0	25
16	Building Multi-Dimensional Induced Pluripotent Stem Cells-Based Model Platforms to Assess Cardiotoxicity in Cancer Therapies. Frontiers in Pharmacology, 2021, 12, 607364.	1.6	20
17	In vitro Models of the Blood–Brain Barrier: Tools in Translational Medicine. Frontiers in Medical Technology, 2020, 2, 623950.	1.3	43
18	Potential of Drug Efficacy Evaluation in Lung and Kidney Cancer Models Using Organ-on-a-Chip Technology. Micromachines, 2021, 12, 215.	1.4	12
19	Advances in Modeling the Immune Microenvironment of Colorectal Cancer. Frontiers in Immunology, 2020, 11, 614300.	2.2	16
20	hiPSCs for predictive modelling of neurodegenerative diseases: dreaming the possible. Nature Reviews Neurology, 2021, 17, 381-392.	4.9	30

	Сг	CITATION REPORT	
#	Article	IF	CITATIONS
21	Engineered models of tumor metastasis with immune cell contributions. IScience, 2021, 24, 102179.	1.9	13
22	The future of phenotypic drug discovery. Cell Chemical Biology, 2021, 28, 424-430.	2.5	24
23	Investigating Tissue Mechanics in vitro Using Untethered Soft Robotic Microdevices. Frontiers in Robotics and Al, 2021, 8, 649765.	2.0	4
24	High-resolution radioluminescence microscopy of FDG uptake in an engineered 3D tumor-stoma mode European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 3400-3407.	el. 3.3	5
25	Research and Development of Microphysiological Systems in Japan Supported by the AMED-MPS Proje Frontiers in Toxicology, 2021, 3, 657765.	ect. 1.6	9
26	Using 3D in vitro cell culture models in anti-cancer drug discovery. Expert Opinion on Drug Discovery, 2021, 16, 841-850.	2.5	16
27	Microphysiological systems: What it takes for community adoption. Experimental Biology and Medicine, 2021, 246, 1435-1446.	1.1	10
28	Deep Learning Enables Fast and Accurate Imputation of Gene Expression. Frontiers in Genetics, 2021, 624128.	12, _{1.1}	14
29	The Combination of Cell Cultured Technology and In Silico Model to Inform the Drug Development. Pharmaceutics, 2021, 13, 704.	2.0	11
30	Human-Based Advanced in vitro Approaches to Investigate Lung Fibrosis and Pulmonary Effects of COVID-19. Frontiers in Medicine, 2021, 8, 644678.	1.2	31
31	Microfluidics for Drug Development: From Synthesis to Evaluation. Chemical Reviews, 2021, 121, 7468-7529.	23.0	95
32	Converging global crises are forcing the rapid adoption of disruptive changes in drug discovery. Drug Discovery Today, 2021, 26, 2489-2495.	3.2	1
33	Recurrent Urinary Tract Infection: A Mystery in Search of Better Model Systems. Frontiers in Cellular and Infection Microbiology, 2021, 11, 691210.	1.8	46
34	Quantifying the progression of non-alcoholic fatty liver disease in human biomimetic liver microphysiology systems with fluorescent protein biosensors. Experimental Biology and Medicine, 2021, 246, 2420-2441.	1.1	5
35	Lung on a Chip Development from Off-Stoichiometry Thiol–Ene Polymer. Micromachines, 2021, 12,	546. 1.4	4
36	Breaking the Third Wall: Implementing 3D-Printing Techniques to Expand the Complexity and Abilities of Multi-Organ-on-a-Chip Devices. Micromachines, 2021, 12, 627.	1.4	23
37	Nobel Turing Challenge: creating the engine for scientific discovery. Npj Systems Biology and Applications, 2021, 7, 29.	1.4	31
38	Airway-On-A-Chip: Designs and Applications for Lung Repair and Disease. Cells, 2021, 10, 1602.	1.8	25

#	Article	IF	CITATIONS
39	The next generation of endothelial differentiation: Tissue-specific ECs. Cell Stem Cell, 2021, 28, 1188-1204.	5.2	31
40	The past, present, and future of breast cancer models for nanomedicine development. Advanced Drug Delivery Reviews, 2021, 173, 306-330.	6.6	65
41	New Insights into the Clinical Implications of Yes-Associated Protein in Lung Cancer: Roles in Drug Resistance, Tumor Immunity, Autophagy, and Organoid Development. Cancers, 2021, 13, 3069.	1.7	10
42	Application of lung microphysiological systems to COVID-19 modeling and drug discovery: a review. Bio-Design and Manufacturing, 2021, 4, 757-775.	3.9	29
43	Imaging complex organ-on-chip systems. , 2021, , .		0
44	3D cell culture models: Drug pharmacokinetics, safety assessment, and regulatory consideration. Clinical and Translational Science, 2021, 14, 1659-1680.	1.5	77
45	Dynamic Physiological Culture of Ex Vivo Human Tissue: A Systematic Review. Cancers, 2021, 13, 2870.	1.7	7
46	Harnessing organs-on-a-chip to model tissue regeneration. Cell Stem Cell, 2021, 28, 993-1015.	5.2	36
47	Emulating the gut–liver axis: Dissecting the microbiome's effect on drug metabolism using multiorgan-on-chip models. Current Opinion in Endocrine and Metabolic Research, 2021, 18, 94-101.	0.6	12
48	Organ-on-a-chip technology for the study of the female reproductive system. Advanced Drug Delivery Reviews, 2021, 173, 461-478.	6.6	39
49	Opportunities and challenges in translational science. Clinical and Translational Science, 2021, 14, 1629-1647.	1.5	59
50	New Endeavors of (Micro)Tissue Engineering: Cells Tissues Organs on-Chip and Communication Thereof. Cells Tissues Organs, 2022, 211, 721-735.	1.3	9
51	Applications for Flexible TFT Arrays Emerge in the Biomedical Domain. Information Display, 2021, 37, 26-33.	0.1	0
52	Emerging Technologies for In Vitro Inhalation Toxicology. Advanced Healthcare Materials, 2021, 10, e2100633.	3.9	34
53	Inborn errors of metabolism: Lessons from iPSC models. Reviews in Endocrine and Metabolic Disorders, 2021, 22, 1189-1200.	2.6	10
54	Emerging Approaches to Understanding Microvascular Endothelial Heterogeneity: A Roadmap for Developing Anti-Inflammatory Therapeutics. International Journal of Molecular Sciences, 2021, 22, 7770.	1.8	19
55	The potential of microfluidics-enhanced extrusion bioprinting. Biomicrofluidics, 2021, 15, 041304.	1.2	19
56	Operationalizing the Use of Biofabricated Tissue Models as Preclinical Screening Platforms for Drug Discovery and Development. SLAS Discovery, 2021, 26, 1164-1176.	1.4	8

#	Article	IF	CITATIONS
57	Harnessing the power of microphysiological systems for COVID-19 research. Drug Discovery Today, 2021, 26, 2496-2501.	3.2	5
58	Organ-on-a-chip technology for nanoparticle research. Nano Convergence, 2021, 8, 20.	6.3	42
59	Facile Fabrication of Electrospun Nanofiber Membrane-Integrated PDMS Microfluidic Chip via Silver Nanowires-Uncured PDMS Adhesive Layer. ACS Macro Letters, 2021, 10, 965-970.	2.3	10
60	Can preclinical drug development help to predict adverse events in clinical trials?. Drug Discovery Today, 2022, 27, 257-268.	3.2	11
61	Microphysiological Systems: Stakeholder Challenges to Adoption in Drug Development. Cells Tissues Organs, 2022, 211, 269-281.	1.3	16
62	Lymph Nodes-On-Chip: Promising Immune Platforms for Pharmacological and Toxicological Applications. Frontiers in Pharmacology, 2021, 12, 711307.	1.6	21
63	3D Bioprinting of Miniaturized Tissues Embedded in Selfâ€Assembled Nanoparticleâ€Based Fibrillar Platforms. Advanced Functional Materials, 2021, 31, .	7.8	21
64	Chlorpyrifos Disrupts Acetylcholine Metabolism Across Model Blood-Brain Barrier. Frontiers in Bioengineering and Biotechnology, 2021, 9, 622175.	2.0	7
65	Determination of therapeutic agents efficiencies of microsatellite instability high colon cancer cells in postâ€metastatic liver biochip modeling. FASEB Journal, 2021, 35, e21834.	0.2	2
66	Human inducible pluripotent stem cells: Realization of initial promise in drug discovery. Cell Stem Cell, 2021, 28, 1507-1515.	5.2	20
67	Genetics and antiepileptic mood stabilizer treatment response in bipolar disorder: what do we know?. Pharmacogenomics, 2021, 22, 913-925.	0.6	1
68	Development of Extracellular Vesicle Therapeutics: Challenges, Considerations, and Opportunities. Frontiers in Cell and Developmental Biology, 2021, 9, 734720.	1.8	75
69	Bridging the academia-to-industry gap: organ-on-a-chip platforms for safety and toxicology assessment. Trends in Pharmacological Sciences, 2021, 42, 715-728.	4.0	26
70	Brain-on-a-Chip: Characterizing the next generation of advanced <i>in vitro</i> platforms for modeling the central nervous system. APL Bioengineering, 2021, 5, 030902.	3.3	23
71	Relevance of organ(s)-on-a-chip systems to the investigation of food-gut microbiota-host interactions. Critical Reviews in Microbiology, 2022, 48, 463-488.	2.7	20
72	Microphysiological systems to study tumor-stroma interactions in brain cancer. Brain Research Bulletin, 2021, 174, 220-229.	1.4	2
73	Human stem cell-based retina on chip as new translational model for validation of AAV retinal gene therapy vectors. Stem Cell Reports, 2021, 16, 2242-2256.	2.3	27
74	Challenging the pipeline. Stem Cell Reports, 2021, 16, 2033-2037.	2.3	8

ARTICLE IF CITATIONS # Photo and Soft Lithography for Organ-on-Chip Applications. Methods in Molecular Biology, 2022, 2373, 0.4 15 75 1-19 Alveolus Lung-on-a-Chip Platform: A Proposal. Chemosensors, 2021, 9, 248. 1.8 77 Organs-on-chip: The way forward. Stem Cell Reports, 2021, 16, 2037-2043. 2.3 26 State of the art in integrated biosensors for organ-on-a-chip applications. Current Opinion in 1.8 34 Biomedical Engineering, 2021, 19, 100309. An Individual Patient's "Body―on Chipsâ€"How Organismoid Theory Can Translate Into Your Personal 79 1.2 6 Precision Therapy Approach. Frontiers in Medicine, 2021, 8, 728866. Advanced human-relevant in vitro pulmonary platforms for respiratory therapeutics. Advanced Drug Delivery Reviews, 2021, 176, 113901. 6.6 Parallelizable Microfluidic Platform to Model and Assess In Vitro Cellular Barriers: Technology and Application to Study the Interaction of 3D Tumor Spheroids with Cellular Barriers. Biosensors, 2021, 81 2.39 11, 314. Modeling indoxyl sulfate transport in a bioartificial kidney: Two-step binding kinetics or lumped 3.9 parameters model for uremic toxin clearance?. Computers in Biology and Medicine, 2021, 138, 104912. Advanced 3D Cell Culture Techniques in Micro-Bioreactors, Part II: Systems and Applications. 83 1.3 9 Processes, 2021, 9, 21. Microfluidic Chip with Low Constant-Current Stimulation (LCCS) Platform: Human Nucleus Pulposus 84 1.4 Degeneration In Vitro Model for Symptomatic Intervertebral Disc. Micromachines, 2021, 12, 1291. Organoids as host models for infection biology – a review of methods. Experimental and Molecular 85 39 3.2 Medicine, 2021, 53, 1471-1482. Multi-Organs-on-Chips for Testing Small-Molecule Drugs: Challenges and Perspectives. 86 Pharmaceutics, 2021, 13, 1657. Adoption of organ-on-chip platforms by the pharmaceutical industry. Nature Reviews Drug Discovery, 87 21.5 36 2021, 20, 961-962. Accelerating Reaction Rates of Biomolecules by Using Shear Stress in Artificial Capillary Systems. Journal of the American Chemical Society, 2021, 143, 16401-16410. 6.6 In Vitro Disease Models of the Endocrine Pancreas. Biomedicines, 2021, 9, 1415. 89 1.4 2 Microneedle arrays integrated with living organisms for smart biomedical applications. Theranostics, 2021, 11, 10012-10029 A lymphatic co-culture model for personalized cancer medicine. EBioMedicine, 2021, 73, 103685. 92 2.7 2 Gut–Kidney Axis on Chip for Studying Effects of Antibiotics on Risk of Hemolytic Uremic Syndrome by 1.5 Shiga Toxin-Producing Escherichia coli. Toxins, 2021, 13, 775.

#	Article	IF	CITATIONS
95	Microfluidic organ-on-chip system for multi-analyte monitoring of metabolites in 3D cell cultures. Lab on A Chip, 2022, 22, 225-239.	3.1	66
96	Design of procedures and projects. , 2022, , 279-317.		0
97	Development of an alveolar chip model to mimic respiratory conditions due to fine particulate matter exposure. Applied Materials Today, 2022, 26, 101281.	2.3	1
98	Design and Fabrication of Organ-on-Chips: Promises and Challenges. Micromachines, 2021, 12, 1443.	1.4	35
99	The role of DMPK science in improving pharmaceutical research and development efficiency. Drug Discovery Today, 2022, 27, 705-729.	3.2	7
100	The Effective Combination between 3D Cancer Models and Stimuli-Responsive Nanoscale Drug Delivery Systems. Cells, 2021, 10, 3295.	1.8	10
101	Mimicking the Biology of Engineered Protein and mRNA Nanoparticle Delivery Using a Versatile Microfluidic Platform. Pharmaceutics, 2021, 13, 1944.	2.0	4
102	Three-Dimensional Culture Systems for Dissecting Notch Signalling in Health and Disease. International Journal of Molecular Sciences, 2021, 22, 12473.	1.8	7
103	Developing nociceptor-selective treatments for acute and chronic pain. Science Translational Medicine, 2021, 13, eabj9837.	5.8	22
104	Emerging microfluidics-enabled platforms for osteoarthritis management: from benchtop to bedside. Theranostics, 2022, 12, 891-909.	4.6	9
105	Biomanufacturing in low Earth orbit for regenerative medicine. Stem Cell Reports, 2022, 17, 1-13.	2.3	22
106	Molecular mechanisms governing aquaporin relocalisation. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183853.	1.4	41
107	Multi-organ-on-chip approach in cancer research. Organs-on-a-Chip, 2022, 4, 100014.	1.8	15
108	Trends in the global organoid technology and industry: from organogenesis in a dish to the commercialization of organoids. Organoid, 0, 1, e11.	0.0	1
109	Organ-on-a-chip technologies to study neuromuscular disorders: possibilities, limitations, and future hopes. Medizinische Genetik, 2021, 33, 261-267.	0.1	0
110	Oxygen control: the often overlooked but essential piece to create better <i>in vitro</i> systems. Lab on A Chip, 2022, 22, 1068-1092.	3.1	21
111	Organ on a Chip: A Novel in vitro Biomimetic Strategy in Amyotrophic Lateral Sclerosis (ALS) Modeling. Frontiers in Neurology, 2021, 12, 788462.	1.1	10
112	From organ-on-a-chip towards body-on-a-chip. Biocell, 2022, 46, 1177-1180.	0.4	Ο

#	Article	IF	CITATIONS
113	Joint-on-chip platforms: entering a new era of in vitro models for arthritis. Nature Reviews Rheumatology, 2022, 18, 217-231.	3.5	24
114	A minimal standardized human bone marrow microphysiological system to assess resident cell behavior during normal and pathological processes. Biomaterials Science, 2022, 10, 485-498.	2.6	1
115	Microphysiological Neurovascular Barriers to Model the Inner Retinal Microvasculature. Journal of Personalized Medicine, 2022, 12, 148.	1.1	8
116	Therapeutic strategies targeting inflammation and immunity in atherosclerosis: how to proceed?. Nature Reviews Cardiology, 2022, 19, 522-542.	6.1	125
117	An Overview of Organs-on-Chips Based on Deep Learning. Research, 2022, 2022, 9869518.	2.8	31
118	Osteosarcoma tumor microenvironment: the key for the successful development of biologically relevant 3D in vitro models. In Vitro Models, 2022, 1, 5-27.	1.0	9
119	Organ on Chip Technology to Model Cancer Growth and Metastasis. Bioengineering, 2022, 9, 28.	1.6	22
120	An outlook on microfluidics: the promise and the challenge. Lab on A Chip, 2022, 22, 530-536.	3.1	115
121	Implementing organ-on-chip in a next-generation risk assessment of chemicals: a review. Archives of Toxicology, 2022, 96, 711-741.	1.9	21
122	Engineering in vitro immune-competent tissue models for testing and evaluation of therapeutics. Advanced Drug Delivery Reviews, 2022, 182, 114111.	6.6	15
123	Nanomedicine for brain cancer. Advanced Drug Delivery Reviews, 2022, 182, 114115.	6.6	57
124	Evaluation of immunotherapies improving macrophage anti-tumor response using a microfluidic model. Organs-on-a-Chip, 2022, 4, 100019.	1.8	7
125	The Advances in Glioblastoma On-a-Chip for Therapy Approaches. Cancers, 2022, 14, 869.	1.7	7
126	Emerging Trajectories for Next Generation Tissue Engineers. ACS Biomaterials Science and Engineering, 2022, 8, 4598-4604.	2.6	5
127	Theranostic nanoparticles for the management of thrombosis. Theranostics, 2022, 12, 2773-2800.	4.6	12
128	The cell as a tool to understand and repair urethra. , 2022, , 1-24.		0
129	Organ-Chips and Omics Advance Cancer Research. Genetic Engineering and Biotechnology News, 2022, 42, 36-38.	0.1	0
130	In Vitro–In Silico Modeling of Caffeine and Diclofenac Permeation in Static and Fluidic Systems with a 16HBE Lung Cell Barrier. Pharmaceuticals, 2022, 15, 250.	1.7	1

#		IF	CITATIONS
131 132	Biomimetic <i>in vitro</i> heart platforms for drug development. Organoid, 0, 2, e1. Academic User View: Organ-on-a-Chip Technology. Biosensors, 2022, 12, 126.	0.0 2.3	0
133	The Biofabrication of Diseased Artery In Vitro Models. Micromachines, 2022, 13, 326.	1.4	4
134	An In Vitro Microfluidic Alveolus Model to Study Lung Biomechanics. Frontiers in Bioengineering and Biotechnology, 2022, 10, 848699.	2.0	11
135	Emerging Technologies for Understanding Platelet Diversity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 540-552.	1.1	2
136	An evidence appraisal of heart organoids in a dish and commensurability to human heart development in vivo. BMC Cardiovascular Disorders, 2022, 22, 122.	0.7	2
137	Teaching principles of translational science to a broad scientific audience using a case study approach: A pilot course from the National Center for Advancing Translational Sciences. Journal of Clinical and Translational Science, 2022, 6, .	0.3	4
138	Mechanisms of interorgan crosstalk in health and disease. FEBS Letters, 2022, 596, 529-533.	1.3	6
139	3D Printing in Solid Dosage Forms and Organ-on-Chip Applications. Biosensors, 2022, 12, 186.	2.3	7
140	Microfluidic Organ-on-a-Chip Devices for Liver Disease Modeling In Vitro. Micromachines, 2022, 13, 428.	1.4	27
141	3D Tissue-Engineered Vascular Drug Screening Platforms: Promise and Considerations. Frontiers in Cardiovascular Medicine, 2022, 9, 847554.	1.1	20
142	Cutting-Edge Technologies for Inflamed Joints on Chip: How Close Are We?. Frontiers in Immunology, 2022, 13, 802440.	2.2	6
143	Nanofabricating neural networks: Strategies, advances, and challenges. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2022, 40, 020801.	0.6	2
144	Studying metabolism with multi-organ chips: new tools for disease modelling, pharmacokinetics and pharmacodynamics. Open Biology, 2022, 12, 210333.	1.5	12
145	Organs-on-chip technology: a tool to tackle genetic kidney diseases. Pediatric Nephrology, 2022, 37, 2985-2996.	0.9	5
146	Application of 3D Hepatic Plate-Like Liver Model for Statin-Induced Hepatotoxicity Evaluation. Frontiers in Bioengineering and Biotechnology, 2022, 10, 826093.	2.0	2
147	Overcoming Multidrug Resistance of Antibiotics via Nanodelivery Systems. Pharmaceutics, 2022, 14, 586.	2.0	23
148	Kidney microphysiological models for nephrotoxicity assessment. Current Opinion in Toxicology, 2022, 30, 100341.	2.6	3

#	Article	IF	CITATIONS
149	Long-Term <i>In Vitro</i> Culture Systems to Study Human Microbiome. ACS Biomaterials Science and Engineering, 2022, 8, 4613-4617.	2.6	4
150	Advanced human developmental toxicity and teratogenicity assessment using human organoid models. Ecotoxicology and Environmental Safety, 2022, 235, 113429.	2.9	32
151	Novel integrated workflow allows production and in-depth quality assessment of multifactorial reprogrammed skeletal muscle cells from human stem cells. Cellular and Molecular Life Sciences, 2022, 79, 229.	2.4	3
152	Application of Micro-Engineered Kidney, Liver, and Respiratory System Models to Accelerate Preclinical Drug Testing and Development. Bioengineering, 2022, 9, 150.	1.6	2
153	Influence of CPM-dependent sorting on the multi-omics profile of hepatocyte-like cells matured in microscale biochips. Biochemical Engineering Journal, 2022, 181, 108408.	1.8	3
154	Engineering complexity in human tissue models of cancer. Advanced Drug Delivery Reviews, 2022, 184, 114181.	6.6	10
155	Dual-cell culture system with identical culture environment for comparison of anti-cancer drug toxicity. Chemical Engineering Science, 2022, 253, 117555.	1.9	2
156	Multiorgan microphysiological systems as tools to interrogate interorgan crosstalk and complex diseases. FEBS Letters, 2022, 596, 681-695.	1.3	7
157	Rapid Prototyping of Organ-on-a-Chip Devices Using Maskless Photolithography. Micromachines, 2022, 13, 49.	1.4	11
158	Microfluidic Roadmap for Translational Nanotheranostics. Small Methods, 2022, 6, e2101217.	4.6	5
159	Three-Dimensional Cell Culture Models to Study Respiratory Virus Infections Including COVID-19. Biomimetics, 2022, 7, 3.	1.5	7
160	Modeling ischemic stroke in a triculture neurovascular unit on-a-chip. Fluids and Barriers of the CNS, 2021, 18, 59.	2.4	30
161	Joan Hunt Senior award lecture: New tools to shed light on the â€ ⁻ black box' of pregnancy. Placenta, 2022, 125, 54-60.	0.7	2
162	Microfluidic Characterization of Red Blood Cells Microcirculation under Oxidative Stress. Cells, 2021, 10, 3552.	1.8	6
164	A Facile and Scalable Hydrogel Patterning Method for Microfluidic 3D Cell Culture and Spheroid-in-Gel Culture Array. Biosensors, 2021, 11, 509.	2.3	16
165	Toward a modular, integrated, miniaturized, and portable microfluidic flow control architecture for organs-on-chips applications. Biomicrofluidics, 2022, 16, 021302.	1.2	6
166	Bioengineering human skeletal muscle models: Recent advances, current challenges and future perspectives. Experimental Cell Research, 2022, 416, 113133.	1.2	6
167	Emerging tumor-on-chips with electrochemical biosensors. TrAC - Trends in Analytical Chemistry, 2022, 153, 116640.	5.8	32

# 168	ARTICLE Nanodelivery of nucleic acids. Nature Reviews Methods Primers, 2022, 2, .	lF 11.8	Citations
169	Applications of Polymers for Organ-on-Chip Technology in Urology. Polymers, 2022, 14, 1668.	2.0	15
170	Continous, non-invasive monitoring of oxygen consumption in a parallelized microfluidic system provides novel insight into the response to nutrients and drugs of primary human hepatocytes EXCLI Journal, 2022, 21, 144-161.	0.5	1
171	A Multi-Organ-on-Chip Approach to Investigate How Oral Exposure to Metals Can Cause Systemic Toxicity Leading to Langerhans Cell Activation in Skin. Frontiers in Toxicology, 2021, 3, 824825.	1.6	17
172	Regeneratively speaking: Reflections on organ transplantation and beta cell replacement in the regenerative medicine era. , 2022, , 199-209.		0
173	Development and Implementation of Portable Biosensors in Microfluidic Point-of-Care Devices for Pathogen Detection. , 2022, , 99-122.		7
174	Endothelial inflammation and neutrophil transmigration are modulated by extracellular matrix composition in an inflammation-on-a-chip model. Scientific Reports, 2022, 12, 6855.	1.6	16
175	A multi-organ chip with matured tissue niches linked by vascular flow. Nature Biomedical Engineering, 2022, 6, 351-371.	11.6	162
176	A guide to the organ-on-a-chip. Nature Reviews Methods Primers, 2022, 2, .	11.8	247
177	The Foundation for Engineering a Pancreatic Islet Niche. Frontiers in Endocrinology, 2022, 13, .	1.5	7
178	3D Lung-on-Chip Model Based on Biomimetically Microcurved Culture Membranes. ACS Biomaterials Science and Engineering, 2022, 8, 2684-2699.	2.6	27
179	Integration of Tumor Microenvironment in Patient-Derived Organoid Models Help Define Precision Medicine of Renal Cell Carcinoma. Frontiers in Immunology, 2022, 13, 902060.	2.2	3
180	Deconstructing human peri-implantation embryogenesis based on embryos and embryoids. Biology of Reproduction, 2022, 107, 212-225.	1.2	3
181	Unlocking the Untapped Potential of Endothelial Kinase and Phosphatase Involvement in Sepsis for Drug Treatment Design. Frontiers in Immunology, 2022, 13, .	2.2	8
182	Three-Dimensional-Bioprinted Liver Chips and Challenges. Applied Sciences (Switzerland), 2022, 12, 5029.	1.3	13
183	Concept development of an on-chip PET system. EJNMMI Physics, 2022, 9, 38.	1.3	3
184	Expanding the search for small-molecule antibacterials by multidimensional profiling. Nature Chemical Biology, 2022, 18, 584-595.	3.9	6
185	New Perspectives for Postmortem Human Satellite Cells of Different Embryological Origin. Frontiers in Physiology, 2022, 13, .	1.3	2

#	Article	IF	CITATIONS
186	Post-COVID Syndrome: The Research Progress in the Treatment of Pulmonary sequelae after COVID-19 Infection. Pharmaceutics, 2022, 14, 1135.	2.0	15
187	Human organoids in basic research and clinical applications. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	83
188	Overview on microfluidics devices for monitoring brain disorder biomarkers. TrAC - Trends in Analytical Chemistry, 2022, 155, 116693.	5.8	12
189	Living Biointerfaces for the Maintenance of Mesenchymal Stem Cell Phenotypes. Advanced Functional Materials, 2022, 32, .	7.8	4
190	Development of a Roadmap for Action on New Approach Methodologies in Risk Assessment. EFSA Supporting Publications, 2022, 19, .	0.3	22
191	StemPanTox: A fast and wide-target drug assessment system for tailor-made safety evaluations using personalized iPS cells. IScience, 2022, 25, 104538.	1.9	1
192	Flowmetering for microfluidics. Lab on A Chip, 2022, 22, 3603-3617.	3.1	18
193	Microphysiological Systems Evaluation: Experience of TEX-VAL Tissue Chip Testing Consortium. Toxicological Sciences, 2022, 188, 143-152.	1.4	17
194	Recent advances in lung-on-a-chip models. Drug Discovery Today, 2022, 27, 2593-2602.	3.2	32
195	The Applications of Microphysiological Systems in Biomedicine: Impact on Urologic and Orthopaedic Research. Encyclopedia, 2022, 2, 1128-1137.	2.4	2
196	Where Is Nano Today and Where Is It Headed? A Review of Nanomedicine and the Dilemma of Nanotoxicology. ACS Nano, 2022, 16, 9994-10041.	7.3	62
197	Traction of 3D and 4D Printing in the Healthcare Industry: From Drug Delivery and Analysis to Regenerative Medicine. ACS Biomaterials Science and Engineering, 2022, 8, 2764-2797.	2.6	34
198	A New Immortalized Human Alveolar Epithelial Cell Model to Study Lung Injury and Toxicity on a Breathing Lung-On-Chip System. Frontiers in Toxicology, 0, 4, .	1.6	17
199	Tissue Engineering and Photodynamic Therapy: A New Frontier of Science for Clinical Application -An Up-To-Date Review. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	5
200	(In)stability of ligands at the surface of inorganic nanoparticles: A forgotten question in nanomedicine?. Nano Today, 2022, 45, 101516.	6.2	10
203	Advancing Tumor Microenvironment Research by Combining Organs-on-Chips and Biosensors. Advances in Experimental Medicine and Biology, 2022, , 171-203.	0.8	3
207	A Novel Fluidic Platform for Semi-Automated Cell Culture into Multiwell-like Bioreactors. Micromachines, 2022, 13, 994.	1.4	1
208	Applications of Microfluidics and Organ-on-a-Chip in Cancer Research. Biosensors, 2022, 12, 459.	2.3	35

#	Article	IF	CITATIONS
209	What Can an Organ-on-a-Chip Teach Us About Human Lung Pathophysiology?. Physiology, 2022, 37, 242-252.	1.6	14
210	Developer's Guide to an Organ-on-Chip Model. ACS Biomaterials Science and Engineering, 2022, 8, 4643-4647.	2.6	12
212	Functional Drug Screening in the Era of Precision Medicine. Frontiers in Medicine, 0, 9, .	1.2	5
215	Organ-on-a-chip microengineering for bio-mimicking disease models and revolutionizing drug discovery. Biosensors and Bioelectronics: X, 2022, 11, 100194.	0.9	7
216	3D-printed, configurable, paper-based, and autonomous multi-organ-on-paper platforms. Molecular Systems Design and Engineering, 2022, 7, 1538-1548.	1.7	3
217	Engineering Organ-on-a-Chip to Accelerate Translational Research. Micromachines, 2022, 13, 1200.	1.4	17
218	A trio of biological rhythms and their relevance in rhythmic mechanical stimulation of cell cultures. Frontiers in Psychology, 0, 13, .	1.1	1
219	Tumor-on-a-chip model for advancement of anti-cancer nano drug delivery system. Journal of Nanobiotechnology, 2022, 20, .	4.2	13
220	Engineered Microphysiological Systems for Testing Effectiveness of Cell-Based Cancer Immunotherapies. Cancers, 2022, 14, 3561.	1.7	11
221	Human organoids: New strategies and methods for analyzing human development and disease. Cell, 2022, 185, 2756-2769.	13.5	42
222	Perfusion culture of multi-layered HepG2 hepatocellular carcinoma cells in a pressure-driven microphysiological system. Journal of Bioscience and Bioengineering, 2022, , .	1.1	0
223	Organâ€Onâ€Aâ€Chip Models of the Blood–Brain Barrier: Recent Advances and Future Prospects. Small, 2022, 18, .	5.2	14
224	In vitro high-content tissue models to address precision medicine challenges. Molecular Aspects of Medicine, 2022, , 101108.	2.7	1
225	In-vitro models of biocompatibility testing for restorative dental materials: From 2D cultures to organs on-a-chip. Acta Biomaterialia, 2022, 150, 58-66.	4.1	17
226	Drosophila Glue: A Promising Model for Bioadhesion. Insects, 2022, 13, 734.	1.0	5
227	Remote Magnetic Microengineering and Alignment of Spheroids into 3D Cellular Fibers. Advanced Functional Materials, 2022, 32, .	7.8	5
228	Regenerative medicine: postnatal approaches. The Lancet Child and Adolescent Health, 2022, 6, 654-666.	2.7	12
229	Organ-on-a-chip: A new tool for in vitro research. Biosensors and Bioelectronics, 2022, 216, 114626.	5.3	16

#	Article	IF	CITATIONS
230	Analysis of reproducibility and robustness of OrganoPlate® 2-lane 96, a liver microphysiological system for studies of pharmacokinetics and toxicological assessment of drugs. Toxicology in Vitro, 2022, 85, 105464.	1.1	7
231	Damage-free evaluation of cultured cells based on multivariate analysis with a single-polymer probe. Chemical Communications, 2022, 58, 11083-11086.	2.2	2
232	Integrated biosensors for monitoring microphysiological systems. Lab on A Chip, 2022, 22, 3801-3816.	3.1	12
233	A similarity scaling approach for organ-on-chip devices. Lab on A Chip, 2022, 22, 3663-3667.	3.1	5
234	Concept Development of an On-Chip PET System. , 2022, , .		0
235	Low Cost, Ease-of-Access Fabrication of Microfluidic Devices Using Wet Paper Molds. Micromachines, 2022, 13, 1408.	1.4	2
237	Dual Patterning of Selfâ€Assembling Spider Silk Protein Nanofibrillar Networks. Advanced Materials Interfaces, 2022, 9, .	1.9	3
238	Microfluidic Techniques for Nextâ€Generation Organoid Systems. Advanced Materials Interfaces, 2022, 9, .	1.9	1
239	Advancing translational science education. Clinical and Translational Science, 2022, 15, 2555-2566.	1.5	12
241	Functional Evaluation and Nephrotoxicity Assessment of Human Renal Proximal Tubule Cells on a Chip. Biosensors, 2022, 12, 718.	2.3	2
242	Harnessing conserved signaling and metabolic pathways to enhance the maturation of functional engineered tissues. Npj Regenerative Medicine, 2022, 7, .	2.5	1
244	Modelling metabolic diseases and drug response using stem cells and organoids. Nature Reviews Endocrinology, 2022, 18, 744-759.	4.3	30
245	Active cell capturing for organ-on-a-chip systems: a review. Biomedizinische Technik, 2022, 67, 443-459.	0.9	3
246	Small tissue chips with big opportunities for space medicine. Life Sciences in Space Research, 2022, 35, 150-157.	1.2	13
247	A storm in a teacup A biomimetic lung microphysiological system in conjunction with a deep-learning algorithm to monitor lung pathological and inflammatory reactions. Biosensors and Bioelectronics, 2023, 219, 114772.	5.3	6
248	Effects of different routes of administration and doses of Sulodexide on leukocyte-endothelium interaction and tissue perfusion on an animal model of low flow and high pressure in veins. Phlebology, 0, , 026835552211145.	0.6	0
249	Lost in translation: Revisiting the use of tyrosine kinase inhibitors in colorectal cancer. Cancer Treatment Reviews, 2022, 110, 102466.	3.4	4
250	Configurable Models of the Neurovascular Unit. , 2022, , 3-49.		Ο

#	Article	IF	CITATIONS
251	Recent advances and future prospects of functional organ-on-a-chip systems. Materials Chemistry Frontiers, 2022, 6, 3633-3661.	3.2	3
252	Bioprinting-based automated deposition of single cancer cell spheroids into oxygen sensor microelectrode wells. Lab on A Chip, 2022, 22, 4369-4381.	3.1	9
253	Perfusion culture of endothelial cells under shear stress on microporous membrane in a pressure-driven microphysiological system. Journal of Bioscience and Bioengineering, 2023, 135, 79-85.	1.1	3
254	4D live imaging and computational modeling of a functional gut-on-a-chip evaluate how peristalsis facilitates enteric pathogen invasion. Science Advances, 2022, 8, .	4.7	12
255	3D Polymer Architectures for the Identification of Optimal Dimensions for Cellular Growth of 3D Cellular Models. Polymers, 2022, 14, 4168.	2.0	2
256	Boosting the Clinical Translation of Organ-on-a-Chip Technology. Bioengineering, 2022, 9, 549.	1.6	6
257	Global research status of pathological scar reported over the period 2001–2021: A <scp>20â€year</scp> bibliometric analysis. International Wound Journal, 2023, 20, 1725-1738.	1.3	3
258	Serpentine Micromixers Using Extensional Mixing Elements. Micromachines, 2022, 13, 1785.	1.4	3
259	Organoid Models of Heart Diseases: Find a New Channel in Improvements of Cardiac Regenerative Medicine. Current Medicinal Chemistry, 2023, 30, 3726-3742.	1.2	1
260	Bioengineered Pancreas–Liver Crosstalk in a Microfluidic Coculture Chip Identifies Human Metabolic Response Signatures in Prediabetic Hyperglycemia. Advanced Science, 2022, 9, .	5.6	11
261	Study of paraquat-induced pulmonary fibrosis using biomimetic micro-lung chips. Biofabrication, 2023, 15, 014104.	3.7	4
262	Effect of mechanical forces on cellular response to radiation. Radiotherapy and Oncology, 2022, 176, 187-198.	0.3	2
263	Electrochemical sensing of oxygen metabolism for a three-dimensional cultured model with biomimetic vascular flow. Biosensors and Bioelectronics, 2023, 219, 114808.	5.3	12
264	Microfluidic quantum sensing platform for lab-on-a-chip applications. Lab on A Chip, 2022, 22, 4831-4840.	3.1	15
265	PDAC-on-chip for <i>in vitro</i> modeling of stromal and pancreatic cancer cell crosstalk. Biomaterials Science, 2022, 11, 208-224.	2.6	4
266	A dental implant-on-a-chip for 3D modeling of host–material–pathogen interactions and therapeutic testing platforms. Lab on A Chip, 0, , .	3.1	0
267	3D-Printed Impedance Micropump for Continuous Perfusion of the Sample and Nutrient Medium Integrated with a Liver-On-Chip Prototype. ACS Omega, 2022, 7, 40900-40910.	1.6	4
268	Biomimetic lung-on-a-chip to model virus infection and drug evaluation. European Journal of Pharmaceutical Sciences, 2023, 180, 106329.	1.9	9

		CITATION RE	PORT	
#	Article		IF	CITATIONS
269	Liver-on-a-chip: Considerations, advances, and beyond. Biomicrofluidics, 2022, 16, .		1.2	9
271	Organoids and Their Research Progress in Plastic and Reconstructive Surgery. Aestheti Surgery, 0, , .	c Plastic	0.5	3
272	Physiomimetic In Vitro Human Models for Viral Infection in the Liver. Seminars in Liver 43, 031-049.	Disease, 2023,	1.8	1
273	Analytical and biomedical applications of microfluidics in traditional Chinese medicine - Trends in Analytical Chemistry, 2023, 158, 116851.	research. TrAC	5.8	2
274	Pump-less, recirculating organ-on-a-chip (rOoC) platform. Lab on A Chip, 2023, 23, 59	1-608.	3.1	8
275	Organotypic cultures as aging associated disease models. Aging, 2022, 14, 9338-9383	3.	1.4	3
276	Recent Advances of Organ-on-a-Chip in Cancer Modeling Research. Biosensors, 2022,	12, 1045.	2.3	14
277	Embryonic ILC-poiesis across tissues. Frontiers in Immunology, 0, 13, .		2.2	1
278	Opportunities and Challenges of Human IPSC Technology in Kidney Disease Research. 2022, 10, 3232.	Biomedicines,	1.4	0
279	Organ-on-a-chip: Its use in cardiovascular research. Clinical Hemorheology and Microci 2023, 83, 315-339.	rculation,	0.9	2
280	Bridging the <i>In Vitro</i> to <i>In Vivo</i> gap: Using the Chick Embryo Model to Ac Nanoparticle Validation and Qualification for <i>In Vivo</i> studies. ACS Nano, 2022, 2	celerate 16, 19626-19650.	7.3	5
281	Performance assessment and economic analysis of a human Liver-Chip for predictive to Communications Medicine, 2022, 2, .	oxicology.	1.9	61
282	A proof-of-concept study poised to remodel the drug development process. Frontiers i Technology, 0, 4, .	n Medical	1.3	2
283	Translational Nanomedicines Across Human Reproductive Organs Modeling on Microfl State-of-the-Art and Future Prospects. ACS Biomaterials Science and Engineering, 202		2.6	4
285	Current Advances in 3D Dynamic Cell Culture Systems. Gels, 2022, 8, 829.		2.1	11
287	A tissue chip with integrated digital immunosensors: In situ brain endothelial barrier cy secretion monitoring. Biosensors and Bioelectronics, 2023, 224, 115030.	tokine	5.3	6
288	Microfluidic Actuated and Controlled Systems and Application for Lab-on-Chip in Space Space: Science & Technology, 2023, 3, .	e Life Science.	1.0	4
289	Organoids/organs-on-a-chip: new frontiers of intestinal pathophysiological models. Lab 2023, 23, 1192-1212.	on A Chip,	3.1	9

	CITATION		
#	Article	IF	CITATIONS
290	Design and engineering of organ-on-a-chip. Biomedical Engineering Letters, 2023, 13, 97-109.	2.1	11
291	Less Is More: Oligomer Extraction and Hydrothermal Annealing Increase PDMS Adhesion Forces for Materials Studies and for Biology-Focused Microfluidic Applications. Micromachines, 2023, 14, 214.	1.4	0
292	OOCDB: A Comprehensive, Systematic, and Real-Time Organs-on-a-Chip Database. Genomics, Proteomics and Bioinformatics, 2023, 21, 243-258.	3.0	1
293	Spatially selective cell treatment and collection for integrative drug testing using hydrodynamic flow focusing and shifting. PLoS ONE, 2023, 18, e0279102.	1.1	2
294	Dorsal aorta polarization and haematopoietic stem cell emergence. Development (Cambridge), 2023, 150, .	1.2	1
295	Analyzing angiogenesis on a chip using deep learning-based image processing. Lab on A Chip, 2023, 23, 475-484.	3.1	10
296	Non-viral nucleic acid delivery approach: A boon for state-of-the-art gene delivery. Journal of Drug Delivery Science and Technology, 2023, 80, 104152.	1.4	1
297	Integrated technologies for continuous monitoring of organs-on-chips: Current challenges and potential solutions. Biosensors and Bioelectronics, 2023, 224, 115057.	5.3	6
298	Image-based crosstalk analysis of cell–cell interactions during sprouting angiogenesis using blood-vessel-on-a-chip. Stem Cell Research and Therapy, 2022, 13, .	2.4	4
299	Wet-laboratory Experiments and Computer Simulation of Growing Cell Clusters. , 2022, , .		1
300	Clamping strategies for organ-on-a-chip devices. Nature Reviews Materials, 2023, 8, 147-164.	23.3	9
301	Bioengineering and Clinical Translation of Human Lung and its Components. Advanced Biology, 0, , 2200267.	1.4	4
302	Lung-on-a-chip. , 2023, , 251-275.		0
303	Organs-on-chips: a decade of innovation. Trends in Biotechnology, 2023, 41, 278-280.	4.9	7
304	Biological knowledge graph-guided investigation of immune therapy response in cancer with graph neural network. Briefings in Bioinformatics, 2023, 24, .	3.2	5
305	Moving perfusion culture and live-cell imaging from lab to disc: Proof of concept toxicity assay with Al-based image analysis. Lab on A Chip, 0, , .	3.1	2
306	How Organ-on-a-Chip Technology Can Assist in Studying the Role of the Glymphatic System in Neurodegenerative Diseases. International Journal of Molecular Sciences, 2023, 24, 2171.	1.8	5
307	Pharma challenges to adoption of microphysiological system in drug research and development, especially safety assessment. Folia Pharmacologica Japonica, 2023, 158, 187-192.	0.1	0

#	ARTICLE	IF	CITATIONS
308	The evolving role of investigative toxicology in the pharmaceutical industry. Nature Reviews Drug Discovery, 2023, 22, 317-335.	21.5	29
309	3D cancer models: One step closer to in vitro human studies. Frontiers in Immunology, 0, 14, .	2.2	6
310	Pharma's Bio-Al revolution. Drug Discovery Today, 2023, 28, 103515.	3.2	2
311	Polymer-based responsive structural color materials. Progress in Materials Science, 2023, 135, 101091.	16.0	32
312	Organs-on-chips technologies – A guide from disease models to opportunities for drug development. Biosensors and Bioelectronics, 2023, 231, 115271.	5.3	15
313	Advances in application and innovation of microfluidic platforms for pharmaceutical analysis. TrAC - Trends in Analytical Chemistry, 2023, 160, 116951.	5.8	5
314	3D multicellular systems in disease modelling: From organoids to organ-on-chip. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	5
315	The Application of Organs-on-a-Chip in Dental, Oral, and Craniofacial Research. Journal of Dental Research, 2023, 102, 364-375.	2.5	10
316	iPSC-derived organ-on-a-chip models for personalized human genetics and pharmacogenomics studies. Trends in Genetics, 2023, 39, 268-284.	2.9	12
317	Building Blood Vessel Chips with Enhanced Physiological Relevance. Advanced Materials Technologies, 2023, 8, .	3.0	2
318	In Vitro Tumor Models on Chip and Integrated Microphysiological Analysis Platform (MAP) for Life Sciences and High-Throughput Drug Screening. Biosensors, 2023, 13, 231.	2.3	4
319	Apolipoprotein A-IV of diabetic-foot patients upregulates tumor necrosis factor α expression in microfluidic arterial models. Experimental Biology and Medicine, 2023, 248, 691-701.	1.1	0
320	Recent advances in liverâ \in onâ \in chips: Design, fabrication, and applications. , 2023, 2, .		6
321	New Approach Methodologies for the Endocrine Activity Toolbox: Environmental Assessment for Fish and Amphibians. Environmental Toxicology and Chemistry, 2023, 42, 757-777.	2.2	2
322	Emerging trends in organ-on-a-chip systems for drug screening. Acta Pharmaceutica Sinica B, 2023, 13, 2483-2509.	5.7	6
323	The Gut–Organ-Axis Concept: Advances the Application of Gut-on-Chip Technology. International Journal of Molecular Sciences, 2023, 24, 4089.	1.8	19
324	A Human Ovarian Tumor & Liver Organ-on-Chip for Simultaneous and More Predictive Toxo-Efficacy Assays. Bioengineering, 2023, 10, 270.	1.6	4
325	Nonmammalian models in toxicology screening. , 2024, , 971-985.		0

#	Article	IF	Citations
326	3D-Printed Microfluidic Chip for Real-Time Glucose Monitoring in Liquid Analytes. Micromachines, 2023, 14, 503.	1.4	5
327	Recent developments in organ-on-a-chip technology for cardiovascular disease research. Analytical and Bioanalytical Chemistry, 2023, 415, 3911-3925.	1.9	4
329	The Synergy between Deep Learning and Organs-on-Chips for High-Throughput Drug Screening: A Review. Biosensors, 2023, 13, 389.	2.3	3
330	Vascularized organ bioprinting: From strategy to paradigm. Cell Proliferation, 2023, 56, .	2.4	7
331	Backgrounder—Part 2. , 2023, , 27-64.		0
332	3D-printed micrometer-scale wireless magnetic cilia with metachronal programmability. Science Advances, 2023, 9, .	4.7	13
333	Biological research and self-driving labs in deep space supported by artificial intelligence. Nature Machine Intelligence, 2023, 5, 208-219.	8.3	4
334	Biomonitoring and precision health in deep space supported by artificial intelligence. Nature Machine Intelligence, 2023, 5, 196-207.	8.3	5
335	Recent Advances in Organâ€onâ€Chips Integrated with Bioprinting Technologies for Drug Screening. Advanced Healthcare Materials, 2023, 12, .	3.9	8
336	Solute transport in the brain tissue: what are the key biophysical parameters tying <i>in vivo</i> and <i>in vitro</i> studies together?. Biomaterials Science, 0, , .	2.6	0
337	Organ-on-a-Chip for Drug Screening: A Bright Future for Sustainability? A Critical Review. ACS Biomaterials Science and Engineering, 2023, 9, 2220-2234.	2.6	2
338	Integration of Extracellular Matrices into Organâ€onâ€Chip Systems. Advanced Healthcare Materials, 2023, 12, .	3.9	8
339	Toxicology in drug research. , 2023, , 29-56.		0
340	Microsystem Advances through Integration with Artificial Intelligence. Micromachines, 2023, 14, 826.	1.4	4
341	How to Build Live-Cell Sensor Microdevices. Sensors, 2023, 23, 3886.	2.1	0
342	Development of a simple cultured cell–anaerobic microbial co-culture system using liquid paraffin. Journal of Bioscience and Bioengineering, 2023, 135, 487-492.	1.1	0
343	The next generation of hybrid microfluidic/integrated circuit chips: recent and upcoming advances in high-speed, high-throughput, and multifunctional lab-on-IC systems. Lab on A Chip, 2023, 23, 2553-2576.	3.1	2
352	Lab-on-a-chip sensors. , 2023, , 65-98.		0

#	Article	IF	CITATIONS
353	Human disease models in drug development. , 2023, 1, 545-559.		18
355	"Pandemics-on-a-Chip― Organ-on-a-Chip Models for Studying Viral Infections. , 2023, , 133-157.		0
360	Microarray-Based Electrochemical Biosensing. Advances in Biochemical Engineering/Biotechnology, 2023, , .	0.6	0
370	The Role of Organ-on-a-Chip Technology in Advancing Precision Medicine. , 2024, , 400-408.		0
371	Organotypic Models for Functional Drug Testing of Human Cancers. BME Frontiers, 2023, 4, .	2.2	1
372	Construction of a spheroid array culture system on a suspended permeable hydrogel membrane scaffold for improving the expression of a liver-specific drug-metabolizing enzyme of HepG2 cells. Biomaterials Science, 2023, 11, 5129-5135.	2.6	0
376	Organ Chips and Visualization of Biological Systems. Advances in Experimental Medicine and Biology, 2023, , 155-183.	0.8	1
377	Stem cell-derived intestinal organoids: a novel modality for IBD. Cell Death Discovery, 2023, 9, .	2.0	5
388	Bioengineering translational models of lymphoid tissues. , 2023, 1, 731-748.		2
411	Use and application of organ-on-a-chip platforms in cancer research. Journal of Cell Communication and Signaling, 2023, 17, 1163-1179.	1.8	2
422	Kinetic Detection of Apoptosis Events Via Caspase 3/7 Activation in a Tumor-Immune Microenvironment on a Chip. Methods in Molecular Biology, 2024, , 109-118.	0.4	0
427	Towards in vitro models for reducing or replacing the use of animals in drug testing. Nature Biomedical Engineering, 0, , .	11.6	1
429	Al-enhanced biomedical micro/nanorobots in microfluidics. Lab on A Chip, 2024, 24, 1419-1440.	3.1	0
435	Organ-on-chip-based disease models. , 2024, , 283-308.		0
439	Genomics, Other "OMIC―Technologies, Precision Medicine, and Additional Biotechnology-Related Techniques. , 2024, , 209-254.		0
443	From animal testing to <i>in vitro</i> systems: advancing standardization in microphysiological systems. Lab on A Chip, 2024, 24, 1076-1087.	3.1	1
450	Organ-on-chip models for pulmonary permeability studies. , 2024, , 563-575.		0
453	Identifying the Most Mobile Content Sections Within a Course of Biosensors from the Last Decades. Lecture Notes in Networks and Systems, 2024, , 126-133.	0.5	Ο

		CITATION REPORT		
#	Article	IF	CITATIONS	
456	Cell Clusters andÂTheir Networks forÂEmerging Applications. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2024, , 90-97.	0.2	0	