Cell fate specification and differentiation in the adult m

Nature Reviews Molecular Cell Biology 22, 39-53

DOI: 10.1038/s41580-020-0278-0

Citation Report

#	Article	IF	Citations
1	A Window into Your Gut: Biologically Inspired Engineering of Mini-gut Tubes InÂVitro. Developmental Cell, 2020, 55, 522-524.	3.1	3
2	The Hippo–YAP Signaling as Guardian in the Pool of Intestinal Stem Cells. Biomedicines, 2020, 8, 560.	1.4	10
3	Cytoskeletal Control and Wnt Signalingâ€"APC's Dual Contributions in Stem Cell Division and Colorectal Cancer. Cancers, 2020, 12, 3811.	1.7	18
4	The 3D Pattern of the Rainbow Trout (Oncorhynchus mykiss) Enterocytes and Intestinal Stem Cells. International Journal of Molecular Sciences, 2020, 21, 9192.	1.8	8
5	A bioengineering perspective on modelling the intestinal epithelial physiology in vitro. Nature Communications, 2020, $11,6244$.	5.8	20
6	Organoid-based modeling of intestinal development, regeneration, and repair. Cell Death and Differentiation, 2021, 28, 95-107.	5.0	60
7	Editorial: Gastrointestinal regulatory peptides. Current Opinion in Endocrinology, Diabetes and Obesity, 2021, 28, 196-197.	1.2	0
8	JAK-STAT Pathway Inhibition Partially Restores Intestinal Homeostasis in Hdac1- and Hdac2-Intestinal Epithelial Cell-Deficient Mice. Cells, 2021, 10, 224.	1.8	11
9	NF-κB Signaling in Ex-Vivo Mouse Intestinal Organoids. Methods in Molecular Biology, 2021, 2366, 283-292.	0.4	2
10	Transit-Amplifying Cells Coordinate Changes in Intestinal Epithelial Cell-Type Composition. Developmental Cell, 2021, 56, 356-365.e9.	3.1	28
11	Subversion of Niche-Signalling Pathways in Colorectal Cancer: What Makes and Breaks the Intestinal Stem Cell. Cancers, 2021, 13, 1000.	1.7	20
12	Spatiotemporal analysis of human intestinal development at single-cell resolution. Cell, 2021, 184, 810-826.e23.	13.5	263
13	The Organoid Platform: Promises and Challenges as Tools in the Fight against COVID-19. Stem Cell Reports, 2021, 16, 412-418.	2.3	20
14	RNA-binding proteins and long noncoding RNAs in intestinal epithelial autophagy and barrier function. Tissue Barriers, 2021, 9, 1895648.	1.6	8
15	A centric view of JAK/STAT5 in intestinal homeostasis, infection, and inflammation. Cytokine, 2021, 139, 155392.	1.4	12
16	Tribbles homolog 2 (Trib2), a pseudo serine/threonine kinase in tumorigenesis and stem cell fate decisions. Cell Communication and Signaling, 2021, 19, 41.	2.7	11
18	Organoids and Colorectal Cancers. Cancers, 2021, 13, 2657.	1.7	26
19	The mechanics of crypt morphogenesis. Nature Cell Biology, 2021, 23, 678-679.	4.6	5

#	Article	IF	Citations
20	Impact of Interleukin 10 Deficiency on Intestinal Epithelium Responses to Inflammatory Signals. Frontiers in Immunology, 2021, 12, 690817.	2.2	13
21	The specification and function of enteroendocrine cells in <i>Drosophila</i> and mammals: a comparative review. FEBS Journal, 2022, 289, 4773-4796.	2.2	29
22	Deregulation of Transcriptional Enhancers in Cancer. Cancers, 2021, 13, 3532.	1.7	4
23	Discovering signaling mechanisms governing metabolism and metabolic diseases with Drosophila. Cell Metabolism, 2021, 33, 1279-1292.	7.2	43
24	Insect Gut Regeneration. Cold Spring Harbor Perspectives in Biology, 2022, 14, a040915.	2.3	24
25	Source and Impact of the EGF Family of Ligands on Intestinal Stem Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 685665.	1.8	26
26	Emerging Themes in the Molecular Pathogenesis of Enterotoxigenic Escherichia coli. Journal of Infectious Diseases, $2021,\ldots$	1.9	5
27	Regulation of Paneth Cell Function by RNA-Binding Proteins and Noncoding RNAs. Cells, 2021, 10, 2107.	1.8	13
28	Cellular origins and lineage relationships of the intestinal epithelium. American Journal of Physiology - Renal Physiology, 2021, 321, G413-G425.	1.6	11
30	SATB2 preserves colon stem cell identity and mediates ileum-colon conversion via enhancer remodeling. Cell Stem Cell, 2022, 29, 101-115.e10.	5.2	31
31	Good Neighbors: The Niche that Fine Tunes Mammalian Intestinal Regeneration. Cold Spring Harbor Perspectives in Biology, 2022, 14, a040865.	2.3	12
32	Adult stem cells and niche cells segregate gradually from common precursors that build the adult Drosophila ovary during pupal development. ELife, 2021, 10, .	2.8	11
33	An elevated deoxycholic acid level induced by high-fat feeding damages intestinal stem cells by reducing the ileal IL-22. Biochemical and Biophysical Research Communications, 2021, 579, 153-160.	1.0	9
34	Innate immune sensing by epithelial barriers. Current Opinion in Immunology, 2021, 73, 1-8.	2.4	16
35	A Combined mRNA- and miRNA-Sequencing Approach Reveals miRNAs as Potential Regulators of the Small Intestinal Transcriptome in Celiac Disease. International Journal of Molecular Sciences, 2021, 22, 11382.	1.8	6
36	Epithelial NELF guards intestinal barrier function to ameliorate colitis by maintaining junctional integrity. Mucosal Immunology, 2022, 15, 279-288.	2.7	6
37	Insights from tissue "omics―analysis on intestinal remodeling in celiac disease. Proteomics, 2021, 21, e2100057.	1.3	2
38	Investigating Adult Stem Cells Through Lineage analyses. Stem Cell Reviews and Reports, 2022, 18, 2-22.	1.7	6

#	Article	IF	CITATIONS
39	Src family kinases inhibit differentiation of intestinal epithelial cells through the Hippo effector YAP1. Biology Open, 2021, 10, .	0.6	7
45	Changes in progenitors and differentiated epithelial cells of neonatal piglets. Animal Nutrition, 2022, 8, 265-276.	2.1	7
46	Articulating the "stem cell niche―paradigm through the lens of non-model aquatic invertebrates. BMC Biology, 2022, 20, 23.	1.7	26
47	Nfatc1 ⁺ colonic stem cells contribute to regeneration upon colitis. Journal of Gastroenterology and Hepatology (Australia), 2022, 37, 734-740.	1.4	2
48	Adaptive differentiation for fast barrier restoration. Developmental Cell, 2022, 57, 147-148.	3.1	0
49	Epigenetic modifier balances Mapk and Wnt signalling in differentiation of goblet and Paneth cells. Life Science Alliance, 2022, 5, e202101187.	1.3	6
50	Therapeutic Potential of Naturally Occurring Small Molecules to Target the Wnt/ \hat{l}^2 -Catenin Signaling Pathway in Colorectal Cancer. Cancers, 2022, 14, 403.	1.7	16
51	Adaptive differentiation promotes intestinal villus recovery. Developmental Cell, 2022, 57, 166-179.e6.	3.1	25
54	ID2 controls differentiation of enteroendocrine cells in mouse small intestine. Acta Physiologica, 2022, 234, e13773.	1.8	3
56	Implication of Intestinal Barrier Dysfunction in Gut Dysbiosis and Diseases. Biomedicines, 2022, 10, 289.	1.4	81
57	Paneth cells and their multiple functions. Cell Biology International, 2022, 46, 701-710.	1.4	16
58	Transplantation of intestinal organoids into a mouse model of colitis. Nature Protocols, 2022, 17, 649-671.	5.5	39
59	Executioner caspases 3 and 7 are dispensable for intestinal epithelium turnover and homeostasis at steady state. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
60	High-Definition DIC Imaging Uncovers Transient Stages of Pathogen Infection Cycles on the Surface of Human Adult Stem Cell-Derived Intestinal Epithelium. MBio, 2022, 13, e0002222.	1.8	11
61	Telocytes: Active Players in the Rainbow Trout (Oncorhynchus mykiss) Intestinal Stem-Cell Niche. Animals, 2022, 12, 74.	1.0	3
62	Cullin 4b-RING ubiquitin ligase targets IRGM1 to regulate Wnt signaling and intestinal homeostasis. Cell Death and Differentiation, 2022, 29, 1673-1688.	5.0	8
63	Cytokine-Induced JAK2-STAT3 Activates Tissue Regeneration under Systemic or Local Inflammation. International Journal of Molecular Sciences, 2022, 23, 2262.	1.8	3
64	Chlorogenic Acid Attenuates Oxidative Stress-Induced Intestinal Mucosa Disruption in Weaned Pigs. Frontiers in Veterinary Science, 2022, 9, 806253.	0.9	6

#	ARTICLE	IF	CITATIONS
65	BMP gradient along the intestinal villus axis controls zonated enterocyte and goblet cell states. Cell Reports, 2022, 38, 110438.	2.9	45
69	Intestinal Wnt in the transition from physiology to oncology. World Journal of Clinical Oncology, 2022, 13, 168-185.	0.9	1
70	Intestinal Tuft-2 cells exert antimicrobial immunity via sensing bacterial metabolite N-undecanoylglycine. Immunity, 2022, 55, 686-700.e7.	6.6	34
71	Notch-dependent DNA <i>cis</i> regulatory elements and their dose-dependent control of <i>C. elegans</i> stem cell self-renewal. Development (Cambridge), 2022, 149, .	1.2	4
72	Gastrointestinal regulatory peptides. Current Opinion in Endocrinology, Diabetes and Obesity, 2022, 29, 167-168.	1.2	0
73	Ubiquitin-modifying enzymes as regulators of colitis. Trends in Molecular Medicine, 2022, 28, 304-318.	3.5	8
74	Duodenal cholinergic tuft cell number is increased in functional dyspepsia. Neurogastroenterology and Motility, 2022, 34, e14378.	1.6	3
75	Bisphenol chemicals disturb intestinal homeostasis via Notch/Wnt signaling and induce mucosal barrier dysregulation and inflammation. Science of the Total Environment, 2022, 828, 154444.	3.9	7
76	Recent advances in tissue stem cells. Science China Life Sciences, 2021, 64, 1998-2029.	2.3	12
78	Intestinal Stem Cell-on-Chip to Study Human Host-Microbiota Interaction. Frontiers in Immunology, 2021, 12, 798552.	2.2	17
79	Supplementation with Exogenous Catalase from <i>Penicillium notatum</i> in the Diet Ameliorates Lipopolysaccharide-Induced Intestinal Oxidative Damage through Affecting Intestinal Antioxidant Capacity and Microbiota in Weaned Pigs. Microbiology Spectrum, 2021, 9, e0065421.	1.2	28
80	Different Types and Functional Effects of Probiotics on Human Health through Regulating Glucose Homeostasis. Journal of Agricultural and Food Chemistry, 2021, 69, 14781-14791.	2.4	3
81	Semantic clustering analysis of E3-ubiquitin ligases in gastrointestinal tract defines genes ontology clusters with tissue expression patterns. BMC Gastroenterology, 2022, 22, 186.	0.8	0
82	Activation of the EGFR/MAPK pathway drives transdifferentiation of quiescent niche cells to stem cells in the Drosophila testis niche. ELife, 2022, 11, .	2.8	13
84	Effects of Gamma-Tocotrienol on Intestinal Injury in a GI-Specific Acute Radiation Syndrome Model in Nonhuman Primate. International Journal of Molecular Sciences, 2022, 23, 4643.	1.8	14
85	Moniezia benedeni Infection Restrain IgA+, IgG+, and IgM+ Cells Residence in Sheep (Ovis aries) Small Intestine. Frontiers in Veterinary Science, 2022, 9, 878467.	0.9	7
87	MTG16 regulates colonic epithelial differentiation, colitis, and tumorigenesis by repressing E protein transcription factors. JCI Insight, 2022, 7, .	2.3	9
88	Periodontal tissue stem cells and mesenchymal stem cells in the periodontal ligament. Japanese Dental Science Review, 2022, 58, 172-178.	2.0	13

#	Article	IF	CITATIONS
89	Macrophage orchestration of epithelial and stromal cell homeostasis in the intestine. Journal of Leukocyte Biology, 2022, 112, 313-331.	1.5	8
90	lleum tissue single-cell mRNA sequencing elucidates the cellular architecture of pathophysiological changes associated with weaning in piglets. BMC Biology, 2022, 20, .	1.7	4
91	CCN1 interacts with integrins to regulate intestinal stem cell proliferation and differentiation. Nature Communications, 2022, 13 , .	5.8	12
92	Multicellular dynamics of zonal liver regeneration mapped in space and time. Cell Stem Cell, 2022, 29, 871-872.	5.2	2
93	Aquaporin 8ab is required in zebrafish embryonic intestine development. Acta Biochimica Et Biophysica Sinica, 2022, , .	0.9	0
94	Lymphatics act as a signaling hub to regulate intestinal stem cell activity. Cell Stem Cell, 2022, 29, 1067-1082.e18.	5.2	53
95	100 plus years of stem cell researchâ€"20 years of ISSCR. Stem Cell Reports, 2022, 17, 1248-1267.	2.3	1
96	Cell and chromatin transitions in intestinal stem cell regeneration. Genes and Development, 2022, 36, 684-698.	2.7	9
97	Human duodenal organoidâ€derived monolayers serve as a suitable barrier model for duodenal tissue. Annals of the New York Academy of Sciences, 2022, 1515, 155-167.	1.8	10
98	SIRT4 Loss Reprograms Intestinal Nucleotide Metabolism to Support Proliferation and Survival Following Perturbation of Homeostasis. SSRN Electronic Journal, 0, , .	0.4	0
102	Molecular Effects of Chronic Exposure to Palmitate in Intestinal Organoids: A New Model to Study Obesity and Diabetes. International Journal of Molecular Sciences, 2022, 23, 7751.	1.8	2
103	Xylooligosaccharide-mediated gut microbiota enhances gut barrier and modulates gut immunity associated with alterations of biological processes in a pig model. Carbohydrate Polymers, 2022, 294, 119776.	5.1	26
104	The Hippo–YAP/TAZ Signaling Pathway in Intestinal Self-Renewal and Regeneration After Injury. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	14
105	Urological cancer organoids, patients' avatars for precision medicine: past, present and future. Cell and Bioscience, 2022, 12, .	2.1	1
106	Gut Epithelial Inositol Polyphosphate Multikinase Alleviates Experimental Colitis via Governing Tuft Cell Homeostasis. Cellular and Molecular Gastroenterology and Hepatology, 2022, 14, 1235-1256.	2.3	8
107	Lymphangiocrine signals are required for proper intestinal repair after cytotoxic injury. Cell Stem Cell, 2022, 29, 1262-1272.e5.	5.2	24
108	Organoids as tools to investigate gastrointestinal nematode development and host interactions. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	9
109	Disruption of stem cell niche-confined R-spondin 3 expression leads to impaired hematopoiesis. Blood Advances, 0 , , .	2.5	2

#	Article	IF	CITATIONS
110	Differentiation and CRISPR-Cas9-mediated genetic engineering of human intestinal organoids. STAR Protocols, 2022, 3, 101639.	0.5	4
111	Stand by me: Fibroblasts regulation of the intestinal epithelium during development and homeostasis. Current Opinion in Cell Biology, 2022, 78, 102116.	2.6	8
112	Treatment of ulcerative colitis with Wu-Mei-Wan by inhibiting intestinal inflammatory response and repairing damaged intestinal mucosa. Phytomedicine, 2022, 105, 154362.	2.3	14
113	Intestinal epithelial organoids: regeneration and maintenance of the intestinal epithelium. Current Opinion in Genetics and Development, 2022, 76, 101977.	1.5	4
114	Zranb1-mutant mice display abnormal colonic mucus production and exacerbation of DSS-induced colitis. Biochemical and Biophysical Research Communications, 2022, 628, 147-154.	1.0	0
115	The role of intestinal stem cell within gut homeostasis: Focusing on its interplay with gut microbiota and the regulating pathways. International Journal of Biological Sciences, 2022, 18, 5185-5206.	2.6	15
116	<i>Jwa</i> participates the maintenance of intestinal epithelial homeostasis via ERK/FBXW7-mediated NOTCH1/PPARÎ 3 /STAT5 axis and acts as a novel putative aging related gene. International Journal of Biological Sciences, 2022, 18, 5503-5521.	2.6	4
117	Taste Receptors beyond Taste Buds. International Journal of Molecular Sciences, 2022, 23, 9677.	1.8	6
118	The miR-181 family regulates colonic inflammation through its activity in the intestinal epithelium. Journal of Experimental Medicine, 2022, 219, .	4.2	4
119	Modelling adult stem cells and their niche in health and disease with epithelial organoids. Seminars in Cell and Developmental Biology, 2023, 144, 20-30.	2.3	3
120	The Immunobiology and Pathogenesis of Celiac Disease. Annual Review of Pathology: Mechanisms of Disease, 2023, 18, 47-70.	9.6	34
121	Applications of human organoids in the personalized treatment for digestive diseases. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	7
123	Harnessing conserved signaling and metabolic pathways to enhance the maturation of functional engineered tissues. Npj Regenerative Medicine, 2022, 7, .	2.5	1
124	Effects of Gamma-Tocotrienol on Partial-Body Irradiation-Induced Intestinal Injury in a Nonhuman Primate Model. Antioxidants, 2022, 11, 1895.	2.2	8
126	Tannic Acid Extracted from Galla chinensis Supplementation in the Diet Improves Intestinal Development through Suppressing Inflammatory Responses via Blockage of NF-κB in Broiler Chickens. Animals, 2022, 12, 2397.	1.0	7
127	Gut microbiotaâ€stem cell niche crosstalk: A new territory for maintaining intestinal homeostasis. , 2022, 1, .		8
128	Clone wars: From molecules to cell competition in intestinal stem cell homeostasis and disease. Experimental and Molecular Medicine, 2022, 54, 1367-1378.	3.2	6
129	Intestinal Epithelial STAT6 Activation Rescues the Defective Anti-Helminth Responses Caused by Ogt Deletion. International Journal of Molecular Sciences, 2022, 23, 11137.	1.8	O

#	Article	IF	CITATIONS
130	Supplementation with paraformic acid in the diet improved intestinal development through modulating intestinal inflammation and microbiota in broiler chickens. Frontiers in Microbiology, 0, 13, .	1.5	7
131	Lithium attenuates graft-versus-host disease via effects on the intestinal stem cell niche. Blood, 0, , .	0.6	3
132	NOX1 is essential for TNF \hat{i} ±-induced intestinal epithelial ROS secretion and inhibits M cell signatures. Gut, 2023, 72, 654-662.	6.1	15
134	Effects of dietary Bopu powder supplementation on intestinal development and microbiota in broiler chickens. Frontiers in Microbiology, $0,13,.$	1.5	5
135	A hierarchical transcription factor cascade regulates enteroendocrine cell diversity and plasticity in Drosophila. Nature Communications, 2022, 13 , .	5.8	4
136	Long noncoding RNA uc.230/CUG-binding protein 1 axis sustains intestinal epithelial homeostasis and response to tissue injury. JCl Insight, 2022, 7 , .	2.3	7
137	Zymosan-A promotes the regeneration of intestinal stem cells by upregulating ASCL2. Cell Death and Disease, 2022, 13 , .	2.7	1
138	A mutation in THREONINE SYNTHASE 1 uncouples proliferation and transition domains of the root apical meristem: experimental evidence and <i>in silico</i> proposed mechanism. Development (Cambridge), 2022, 149, .	1.2	2
139	A stem cell aging framework, from mechanisms to interventions. Cell Reports, 2022, 41, 111451.	2.9	26
140	An artificial LAMA2-GelMA hydrogel microenvironment for the development of pancreatic endocrine progenitors. Biomaterials, 2022, 291, 121882.	5.7	4
141	Intestinal epithelium in early life. Mucosal Immunology, 2022, 15, 1181-1187.	2.7	16
142	Mapping prohormone processing by proteases in human enteroendocrine cells using genetically engineered organoid models. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	5
143	Epithelial dysfunction is prevented by IL-22 treatment in a Citrobacter rodentium-induced colitis model that shares similarities with inflammatory bowel disease. Mucosal Immunology, 2022, 15, 1338-1349.	2.7	4
144	A dietary change to a high-fat diet initiates a rapid adaptation of the intestine. Cell Reports, 2022, 41, 111641.	2.9	26
145	Molecular and Functional Characterization of Human Intestinal Organoids and Monolayers for Modeling Epithelial Barrier. Inflammatory Bowel Diseases, 2023, 29, 195-206.	0.9	11
146	Efficient and simple genetic engineering of enteroids using mouse isolated crypts for investigating intestinal functions. Biochemical and Biophysical Research Communications, 2022, 637, 153-160.	1.0	2
147	Oral Cell-Targeted Delivery Systems Constructed of Edible Materials: Advantages and Challenges. Molecules, 2022, 27, 7991.	1.7	0
148	Small noncoding vault <scp>RNA2</scp> â€1 disrupts gut epithelial barrier function via interaction with <scp>HuR</scp> . EMBO Reports, 2023, 24, .	2.0	7

#	ARTICLE	IF	CITATIONS
149	Collagen type I-mediated mechanotransduction controls epithelial cell fate conversion during intestinal inflammation. Inflammation and Regeneration, 2022, 42, .	1.5	6
151	Serum homocysteine is a valuable marker for predicting aggravation of infection in intestinal obstruction patients. Experimental Biology and Medicine, 2023, 248, 36-43.	1.1	0
152	The microbiota control the neonatal WNT-ernet. Immunity, 2022, 55, 2219-2222.	6.6	0
154	Enteroendocrine Cells Protect the Stem Cell Niche by Regulating Crypt Metabolism in Response to Nutrients. Cellular and Molecular Gastroenterology and Hepatology, 2023, 15, 1293-1310.	2.3	6
155	Aryl Hydrocarbon Receptor Activation Coordinates Mouse Small Intestinal Epithelial Cell Programming. Laboratory Investigation, 2023, 103, 100012.	1.7	15
156	Effects of Dietary Isoleucine Supplementation on the Production Performance, Health Status and Cecal Microbiota of Arbor Acre Broiler Chickens. Microorganisms, 2023, 11, 236.	1.6	3
157	Single-cell multi-omics and lineage tracing to dissect cell fate decision-making. Stem Cell Reports, 2023, 18, 13-25.	2.3	10
158	The Gut Microbiota and Its Metabolites Contribute to Ageing and Ageing-Related Diseases. Healthy Ageing and Longevity, 2023, , 3-22.	0.2	0
159	Dendrobium fimbriatum polysaccharide ameliorates DSS-induced intestinal mucosal injury by IL-22-regulated intestinal stem cell regeneration. International Journal of Biological Macromolecules, 2023, 230, 123199.	3.6	3
160	Heat stress disrupts intestinal stem cell migration and differentiation along the crypt–villus axis through FAK signaling. Biochimica Et Biophysica Acta - Molecular Cell Research, 2023, 1870, 119431.	1.9	0
162	Physiological hypoxia improves growth and functional differentiation of human intestinal epithelial organoids. Frontiers in Immunology, 0, 14, .	2.2	5
164	Morphological alterations in C57BL/6 mouse intestinal organoids as a tool for predicting chemical-induced toxicity. Archives of Toxicology, 2023, 97, 1133-1146.	1.9	1
165	Vagus innervation in the gastrointestinal tumor: Current understanding and challenges. Biochimica Et Biophysica Acta: Reviews on Cancer, 2023, 1878, 188884.	3.3	2
166	Orchestration of MUC2 â€" The key regulatory target of gut barrier and homeostasis: A review. International Journal of Biological Macromolecules, 2023, 236, 123862.	3.6	8
167	κ-Carrageenan-essential oil loaded composite biomaterial film facilitates mechanosensing and tissue regenerative wound healing. International Journal of Biological Macromolecules, 2023, 241, 124490.	3.6	4
168	Dangerous liaisons: how helminths manipulate the intestinal epithelium. Trends in Parasitology, 2023,	1.5	1
169	Epithelial and microbial determinants of colonic drug distribution. European Journal of Pharmaceutical Sciences, 2023, 183, 106389.	1.9	0
173	Retrospective analysis of enhancer activity and transcriptome history. Nature Biotechnology, 2023, 41, 1582-1592.	9.4	3

#	Article	IF	Citations
174	Human intestinal organoid models for celiac disease research. Methods in Cell Biology, 2023, , .	0.5	0
175	Intestinal stem cell aging at singleâ€cell resolution: Transcriptional perturbations alter cell developmental trajectory reversed by gerotherapeutics. Aging Cell, 2023, 22, .	3.0	5
177	Establishment of Epithelial Inflammatory Injury Model Using Intestinal Organoid Cultures. Stem Cells International, 2023, 2023, 1-13.	1.2	2
179	From birth to death: The hardworking life of Paneth cell in the small intestine. Frontiers in Immunology, 0, 14, .	2.2	11
181	Function of stem cells in radiation-induced damage. International Journal of Radiation Biology, 2023, 99, 1483-1494.	1.0	0
182	Multifaceted involvements of Paneth cells in various diseases within intestine and systemically. Frontiers in Immunology, 0, 14, .	2.2	4
183	Middle-out methods for spatiotemporal tissue engineering of organoids., 2023, 1, 329-345.		10
184	CFTR High Expresser Cells in cystic fibrosis and intestinal diseases. Heliyon, 2023, 9, e14568.	1.4	1
185	Plasticity of Dental Cell Types in Development, Regeneration, and Evolution. Journal of Dental Research, 2023, 102, 589-598.	2.5	3
186	Companion animal organoid technology to advance veterinary regenerative medicine. Frontiers in Veterinary Science, 0, 10 , .	0.9	2
187	Dietary supplementation with probiotics increases growth performance, improves the intestinal mucosal barrier and activates the Wnt∫ı²â€€atenin pathway activity in chicks. Journal of the Science of Food and Agriculture, 2023, 103, 4649-4659.	1.7	4
188	The emerging roles of the cytoskeleton in intestinal epithelium homeostasis. Seminars in Cell and Developmental Biology, 2023, 150-151, 23-27.	2.3	3
189	Comparative Transcriptomic Analysis Reveals the Functionally Segmented Intestine in Tunicate Ascidian. International Journal of Molecular Sciences, 2023, 24, 6270.	1.8	2
190	DR3 Regulates Intestinal Epithelial Homeostasis and Regeneration After Intestinal Barrier Injury. Cellular and Molecular Gastroenterology and Hepatology, 2023, 16, 83-105.	2.3	2
191	The intestinal stem cell niche flexes its muscles. Nature Reviews Molecular Cell Biology, 2023, 24, 309-309.	16.1	1
192	Intercellular exchange of Wnt ligands reduces cell population heterogeneity during embryogenesis. Nature Communications, 2023, 14, .	5.8	3
193	Maintenance of high-turnover tissues during and beyond homeostasis. Cell Stem Cell, 2023, 30, 348-361.	5.2	1
198	Physiological and Metabolic Functions of the Intestinal Epithelium: From the Small to the Large Intestine., 2023, , 1-26.		0

#	Article	IF	Citations
206	Epigenetic and Transcriptional Dynamics of Notch Program in Intestinal Differentiation. Methods in Molecular Biology, 2023, , 77-88.	0.4	0
208	Confocal Laser Scanning Imaging of Cell Junctions in Human Colon Cancer Cells. Methods in Molecular Biology, 2023, , 245-259.	0.4	0
231	FOXO transcription factors as mediators of stress adaptation. Nature Reviews Molecular Cell Biology, 2024, 25, 46-64.	16.1	5
271	Method for Two-Dimensional Epithelial Monolayer Formation Derived from Mouse Three-Dimensional Small Intestinal Organoids. Methods in Molecular Biology, 2024, , 73-84.	0.4	0
272	Decoding the basis of histological variation in human cancer. Nature Reviews Cancer, 0, , .	12.8	1
277	TMED10-mediated unconventional secretion of IL-33 regulates intestinal epithelium differentiation and homeostasis. Cell Research, 2024, 34, 258-261.	5.7	0
297	Immunological mechanisms of lesions in celiac disease. , 2024, , 59-75.		0
299	Darmkrebs. , 2024, , 335-354.		0