Analyzing Grant-Free Access for URLLC Service

IEEE Journal on Selected Areas in Communications 39, 741-755

DOI: 10.1109/jsac.2020.3018822

Citation Report

#	Article	IF	CITATIONS
1	Performance Analysis and Optimization of NOMA With HARQ for Short Packet Communications in Massive IoT. IEEE Internet of Things Journal, 2021, 8, 4736-4748.	8.7	27
2	Network Coding for <i>K</i> -Repetition in Grant-Free Random Access. IEEE Wireless Communications Letters, 2021, 10, 2557-2561.	5.0	9
3	Learning-Based Prediction and Proactive Uplink Retransmission for Wireless Virtual Reality Network. IEEE Transactions on Vehicular Technology, 2021, 70, 10723-10734.	6.3	6
4	Physical Layer Security for Beyond 5G: Ultra Secure Low Latency Communications. IEEE Open Journal of the Communications Society, 2021, 2, 2232-2242.	6.9	34
5	A Spatiotemporal Model for Hard-deadline Multi-stream Traffic in Uplink IoT Networks. IEEE Internet of Things Journal, 2021, , 1-1.	8.7	2
6	Deep Learning for Distributed User Association in Massive Industrial IoT Networks. , 2021, , .		2
7	Poisson Receivers: A Probabilistic Framework for Analyzing Coded Random Access. IEEE/ACM Transactions on Networking, 2021, 29, 862-875.	3.8	10
8	Spectrum Slicing for Multiple Access Channels with Heterogeneous Services. Entropy, 2021, 23, 686.	2.2	3
9	MAC for Machine-Type Communications in Industrial IoT—Part I: Protocol Design and Analysis. IEEE Internet of Things Journal, 2021, 8, 9945-9957.	8.7	22
10	Analytical Model and Feedback Predictor Optimization for Combined Early-HARQ and HARQ. Mathematics, 2021, 9, 2104.	2.2	O
11	Achieving Energy-Efficient Uplink URLLC With MIMO-Aided Grant-Free Access. IEEE Transactions on Wireless Communications, 2022, 21, 1407-1420.	9.2	11
12	Enabling Grant-Free URLLC: An Overview of Principle and Enhancements by Massive MIMO. IEEE Internet of Things Journal, 2022, 9, 384-400.	8.7	27
13	Stochastic Geometry Framework for Ultrareliable Cooperative Communications With Random Blockages. IEEE Internet of Things Journal, 2022, 9, 5150-5161.	8.7	3
14	Feedback Prediction for Proactive HARQ in the Context of Industrial Internet of Things. , 2020, , .		5
15	Analytical Model of Early HARQ Feedback Prediction. Lecture Notes in Computer Science, 2020, , 222-239.	1.3	1
16	Industrial Internet of Things: Smart Factory. Wireless Networks, 2021, , 11-61.	0.5	О
17	Analyzing Uplink Outage Probability of Grant-Free Access and Retransmission for URLLC., 2021,,.		0
18	Adaptive Transmission Parameters Selection Algorithm for URLLC Traffic in Uplink. , 2020, , .		3

#	Article	IF	CITATIONS
19	Network-Load Estimation for K-Repetition Grant-Free Access Enabling Adaptive Resource Allocation Towards QoS Enhancement. , 2021 , , .		3
20	Rainbow-Link: Beam-Alignment-Free and Grant-Free mmW Multiple Access Using True-Time-Delay Array. IEEE Journal on Selected Areas in Communications, 2022, 40, 1692-1705.	14.0	9
21	Optimization of Grant-Free NOMA With Multiple Configured-Grants for mURLLC. IEEE Journal on Selected Areas in Communications, 2022, 40, 1222-1236.	14.0	16
22	Sensing-Based Grant-Free Scheduling for Ultra Reliable Low Latency and Deterministic Beyond 5G Networks. IEEE Transactions on Vehicular Technology, 2022, 71, 4171-4183.	6.3	9
23	Fog-RAN Enabled Multi-Connectivity and Multi-Cell Scheduling Framework for Ultra-Reliable Low Latency Communication. IEEE Access, 2022, 10, 7059-7072.	4.2	6
24	Performance evaluation of IoT networks: A product density approach. Computer Communications, 2022, 186, 65-79.	5.1	2
25	Analyzing Novel Grant-Based and Grant-Free Access Schemes for Small Data Transmission. IEEE Transactions on Communications, 2022, 70, 2805-2819.	7.8	13
26	Extreme ultra-reliable and low-latency communication. Nature Electronics, 2022, 5, 133-141.	26.0	33
27	Reliability Analysis of Grant-Free Uplink Data Transmission for URLLC. , 2021, , .		3
28	Performance Analysis of Repetition-based Grant-free Access for URLLC., 2021,,.		2
29	Priority-based load-adaptive preamble separation random access for QoS-differentiated services in 5G networks. Journal of Network and Computer Applications, 2022, 203, 103396.	9.1	3
30	Machine Learning Enables Radio Resource Allocation in the Downlink of Ultra-Low Latency Vehicular Networks. IEEE Access, 2022, 10, 44710-44723.	4.2	4
31	Intelligent Session Management for URLLC in 5G Open Radio Access Network: A Deep Reinforcement Learning Approach. IEEE Transactions on Industrial Informatics, 2023, 19, 1844-1853.	11.3	1
32	Enabling Precision Medicine via Contemporary and Future Communication Technologies: A Survey. IEEE Access, 2023, 11, 21210-21240.	4.2	2
33	Toward URLLC with Proactive HARQ Adaptation. , 2022, , .		2
34	Grant-Free Power Allocation for Ultra-Dense IoT: A Mean Field Perspective. , 2022, , .		0
35	Sensing Based Contention Access for 6G Low Latency Networks. , 2022, , .		1
36	Optimal Probabilistic Repetition for Massive MIMO-Aided Grant-Free Short-Packet Transmissions. IEEE Transactions on Vehicular Technology, 2022, 71, 12407-12412.	6.3	2

#	Article	IF	Citations
37	Novel Random Access Schemes for Small Data Transmission. , 2022, , .		1
38	Grant Free Access for Multi-Channel Networks Under URLLC. , 2022, , .		0
39	Uplink Performance Analysis of Grant-Free NOMA Networks. , 2022, , .		1
40	Latency Analysis and Field Trial for 5G NR. , 2022, , .		4
41	Optimization of Repetition Scheme for URLLC with Diverse Reliability Requirements. , 2022, , .		3
42	Proactive Resource Scheduling for 5G and Beyond Ultra-Reliable Low Latency Communications. , 2022, , .		1
43	Raptor-Irsa Grant-Free Random Access Protocol for Smart GridsÂApplications. SSRN Electronic Journal, 0, , .	0.4	0
44	Ultra-Reliable Low-Latency Communications: Unmanned Aerial Vehicles Assisted Systems. Information (Switzerland), 2022, 13, 430.	2.9	5
45	Rare-Event Analysis of Packet-Level Coding for URLLC via Virtual Queue. IEEE Transactions on Wireless Communications, 2023, 22, 2962-2974.	9.2	2
46	Traffic Load Learning Towards Early Detection of Intrusion in Industrial mMTC Networks. IEEE Transactions on Industrial Informatics, 2023, 19, 8441-8451.	11.3	4
47	Age of Information With Hybrid-ARQ: A Unified Explicit Result. IEEE Transactions on Communications, 2022, 70, 7899-7914.	7.8	10
48	A Hybrid Grant NOMA Random Access for Massive MTC Service. IEEE Internet of Things Journal, 2023, 10, 5490-5505.	8.7	3
49	Context-Aware Mobile Edge Resource Allocation in OFDMA Downlink System. IEEE Transactions on Network Science and Engineering, 2023, 10, 2755-2768.	6.4	1
50	Dynamic Resource Scheduling Optimization for Ultra-Reliable Low Latency Communications: From Simulation to Experimentation. , 2022, , .		0
51	Throughput Assessment of Priority-based Semi-Grant-Free NOMA Protocol. , 2022, , .		0
52	Adaptive parameters selection for uplink grant-free URLLC transmission in 5G systems. Computer Networks, 2023, 222, 109527.	5.1	8
53	Algorithm for Transmission Parameters Selection for Sporadic URLLC Traffic in Uplink. Journal of Communications Technology and Electronics, 2022, 67, 1492-1499.	0.5	0
54	Improved Grant-Free Access for URLLC via Multi-Tier-Driven Computing: Network-Load Learning, Prediction, and Resource Allocation. IEEE Journal on Selected Areas in Communications, 2023, 41, 607-622.	14.0	8

#	Article	IF	Citations
55	A Novel Dynamically Differentiated Access Scheme for Massive Grant-Free NOMA., 2022,,.		O
56	A probabilistic Grant Free scheduling model to allocate resources for eXtreme URLLC applications. , 2022, , .		1
57	Analyzing Age Performance of Hybrid-ARQ: A Unified Explicit Result. , 2022, , .		0
58	Distributed Resource Allocation for URLLC in IIoT Scenarios: A Multi-Armed Bandit Approach., 2022,,.		4
59	Proactive Resource Management for Predictive 5G Uplink Slicing., 2022,,.		1
60	Semi-Probabilistic Repetition Schemes for Sporadic URLLC Traffic in Multiuser Massive MIMO Systems. IEEE Transactions on Communications, 2023, 71, 2104-2120.	7.8	0
61	Machine Learning-Based Uplink Scheduling Approaches for Mixed Traffic in Cellular Systems. IEEE Access, 2023, 11, 10238-10253.	4.2	0
62	Deep Reinforcement Learning-Based Grant-Free NOMA Optimization for mURLLC. IEEE Transactions on Communications, 2023, 71, 1475-1490.	7.8	7
63	On the required radio resources for ultra-reliable communication in highly interfered scenarios. IEEE Communications Letters, 2023, , 1-1.	4.1	0
64	Statistical Learning-based Adaptive Network Access for the Industrial Internet-of-Things. IEEE Internet of Things Journal, 2023, , 1-1.	8.7	1
65	Raptor-IRSA Grant-free Random Access protocol for smart grids applications. Computer Networks, 2023, 229, 109775.	5.1	1
66	Distributed Machine-Learning for Early HARQ Feedback Prediction in Cloud RANs. IEEE Transactions on Wireless Communications, 2024, 23, 31-44.	9.2	1
67	URLLC in Beyond 5G and 6G Networks: An Interference Management Perspective. IEEE Access, 2023, 11, 54639-54663.	4.2	7
68	Joint activity and channel estimation for asynchronous grant-Free NOMA with chaos sequence. Wireless Networks, 0, , .	3.0	0
69	Ultra-High Rate-Reliability Fairness in Grant-Free Massive URLLC NOMA System: Joint Power and Channel Allocation Using Meta-Heuristic Search. IEEE Transactions on Vehicular Technology, 2023, 72, 15899-15915.	6.3	2
70	Reliable and Energy-Efficient IoT Systems: Design Considerations in Coexistence Deployments. IEEE Transactions on Network and Service Management, 2023, 20, 2412-2427.	4.9	0
71	Analysis of a Contention-Based Approach Over 5G NR for Federated Learning in an Industrial Internet of Things Scenario. IEEE Access, 2023, 11, 74473-74485.	4.2	0
72	Reinforcement Learning-Based Grant-Free Mode Selection for O-RAN Systems. , 2023, , .		0

#	Article	IF	CITATIONS
73	DecAge: Decentralized Flow Scheduling for Industrial 5G and TSN Integrated Networks. IEEE Transactions on Network Science and Engineering, 2024, 11, 543-555.	6.4	0
74	MIMO-aided Irregular Repetition Schemes for Mission Critical Communications. , 2023, , .		0
75	Adaptive K-Repetition Transmission Employing Site Diversity Reception for 5G NR Uplink Grant-Free URLLC., 2023,,.		1
76	Dynamic Random Access without Observation under Deadline-Constrained Periodic Traffic. IEEE Transactions on Vehicular Technology, 2023, , 1-6.	6.3	0
77	Enhanced Sliding Window Superposition Coding for Industrial Automation. , 2023, , .		0
78	Closed-form Approximation for Performance Bound of Finite Blocklength Massive MIMO Transmission. IEEE Transactions on Communications, 2023, , 1-1.	7.8	1
79	Model-ML Integrated Intelligence in URLLC Towards End-to-End Delay Fulfillment Over Vehicular Networks. IEEE Internet of Things Magazine, 2023, 6, 62-68.	2.6	0
80	An Adaptive Hybrid Automatic Repeat Request (A-HARQ) Scheme Based on Reinforcement Learning. Electronics (Switzerland), 2023, 12, 4127.	3.1	1
81	Adaptive <i>K</i> -Repetition Transmission with Site Diversity Reception for Energy-Efficient Grant-Free URLLC in 5G NR. IEICE Transactions on Communications, 2023, , .	0.7	0
82	On Aol of Grant-Free Access With HARQ. IEEE Transactions on Communications, 2024, 72, 924-937.	7.8	0
83	Efficient User Grouping for Grant-Free URLLC. , 2023, , .		0
84	Adaptive Flowing Traffic Prediction in Contention Random Access for Optimizing Virtual/Physical Resource in B5G/5G New Radio and Core Network. IEEE Transactions on Network Science and Engineering, 2024, 11, 1934-1946.	6.4	0
85	A Novel Grant-Free Random Access Scheme for mMTC. , 2023, , .		0