Integrated Electricity and Hydrogen Energy Sharing in

IEEE Transactions on Smart Grid 12, 1149-1162

DOI: 10.1109/tsg.2020.3023716

Citation Report

#	Article	IF	Citations
1	Coupled Multinetwork Constrained Planning of Energy Supplying Facilities for Hybrid Hydrogen-Electric Vehicles. IEEE Transactions on Industry Applications, 2022, 58, 2848-2862.	3.3	4
2	Credit-Based Pricing and Planning Strategies for Hydrogen and Electricity Energy Storage Sharing. IEEE Transactions on Sustainable Energy, 2022, 13, 67-80.	5.9	29
3	Cooperative Operation of Power and Hydrogen Energy Systems With HFCV Demand Response. IEEE Transactions on Industry Applications, 2022, 58, 2630-2639.	3.3	11
4	Optimal Power Flow Algorithm Based on Second-Order Cone Relaxation Method for Electricity-Gas Integrated Energy Microgrid. Complexity, 2021, 2021, 1-11.	0.9	3
5	Synergies between power and hydrogen carriers using fuel-cell hybrid electrical vehicle and power-to-gas storage as new coupling points. Energy Conversion and Management, 2021, 246, 114670.	4.4	28
6	Multi-Period Restoration Model for Integrated Power-Hydrogen Systems Considering Transportation States. IEEE Transactions on Industry Applications, 2022, 58, 2694-2706.	3.3	16
7	Electric Mobility Hosting Capacity assessment in Terni distribution network., 2021,,.		10
8	Electricity-Heat-Hydrogen Modeling of Hydrogen Storage System Considering Off-Design Characteristics. IEEE Access, 2021, 9, 156768-156777.	2.6	10
9	Low-carbon economic dispatch and energy sharing method of multiple Integrated Energy Systems from the perspective of System of Systems. Energy, 2022, 244, 122717.	4.5	45
10	Dataâ€driven optimal scheduling for underground space based integrated hydrogen energy system. IET Renewable Power Generation, 2022, 16, 2521-2531.	1.7	22
11	Distributed Resilient Double-Gradient-Descent Based Energy Management Strategy for Multi-Energy System Under DoS Attacks. IEEE Transactions on Network Science and Engineering, 2022, 9, 2301-2316.	4.1	14
12	Multi-Objective Operation Optimization Considering the Coupling of Hydrogen Energy Storage and Hydropower. SSRN Electronic Journal, 0, , .	0.4	O
13	Pricing Strategy of Cold Ironing Services for All-Electric Ships Based on Carbon Integrated Electricity Price. IEEE Transactions on Sustainable Energy, 2022, 13, 1553-1565.	5.9	12
14	Review of energy sharing: Business models, mechanisms, and prospects. IET Renewable Power Generation, 2022, 16, 2468-2480.	1.7	13
15	Optimal operation of integrated energy system including large-scale controllable industrial loads. Energy Reports, 2022, 8, 938-949.	2.5	3
16	Aggregated operation of heterogeneous small-capacity distributed energy resources in peer-to-peer energy trading. International Journal of Electrical Power and Energy Systems, 2022, 141, 108162.	3.3	13
17	Optimal day-ahead operation strategy of an electricity-hydrogen integrated energy system considering extra-day forecast information. , 2021, , .		1
18	High-Density Defects Activating Fe-Doped Molybdenum Sulfide@N-Doped Carbon Heterostructures for Efficient Electrochemical Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2022, 10, 182-193.	3.2	12

#	Article	IF	Citations
19	Financial Risk Management for Intermittent Renewable Energy Trading in Deregulated Power Markets: A Systematic Review. , 2021 , , .		0
20	Collaborative Operation Between Power Network and Hydrogen Fueling Stations With Peer-to-Peer Energy Trading. IEEE Transactions on Transportation Electrification, 2023, 9, 1521-1540.	5.3	5
21	Chance-constrained energy-reserve co-optimization scheduling of wind-photovoltaic-hydrogen integrated energy systems. International Journal of Hydrogen Energy, 2023, 48, 6892-6905.	3.8	13
22	Optimal allocation of power-to-hydrogen units in regional power grids for green hydrogen trading: Opportunities and barriers. Journal of Cleaner Production, 2022, 358, 131937.	4.6	9
23	Stochastic Optimal Operation Framework of an Integrated Methane-Based Zero-CO2 Energy Hub in Energy Markets. Electric Power Systems Research, 2022, 209, 108005.	2.1	11
24	Market-Based Resource Allocation of Distributed Cloud Computing Services: Virtual Energy Storage Systems. IEEE Internet of Things Journal, 2022, 9, 22811-22821.	5.5	6
25	Low-carbon transition in smart city with sustainable airport energy ecosystems and hydrogen-based renewable-grid-storage-flexibility., 2022, 1, 100001.		53
26	Optimal Operation Strategy of Low-Carbon Integrated Energy System Considering Power to Gas and Carbon Capture Technology. , 2022, , .		1
27	Optimal Dispatching Strategy for Integrated Energy System with Electricity-Heat-Cold-Hydrogen., 2022,,.		0
28	Optimal configuration and pricing strategies for electric-heat cloud energy storage: A Stackelberg game approach. Sustainable Energy Technologies and Assessments, 2022, 53, 102596.	1.7	4
29	Grid-Oriented multiphysics model of Power-to-Hydrogen electrolyzers. Energy Conversion and Management, 2022, 270, 116264.	4.4	4
30	Sustainable energy supply of electric vehicle charging parks and hydrogen refueling stations integrated in local energy systems under a risk-averse optimization strategy. Journal of Energy Storage, 2022, 55, 105633.	3.9	11
31	Day-ahead economic optimization scheduling model for electricity–hydrogen collaboration market. Energy Reports, 2022, 8, 1320-1327.	2.5	7
32	Credit-based Peer-to-Peer energy sharing mechanism under the distributed negotiation framework. International Journal of Electrical Power and Energy Systems, 2023, 144, 108598.	3.3	2
33	Joint Optimization and Learning Approach for Smart Operation of Hydrogen-Based Building Energy Systems. IEEE Transactions on Smart Grid, 2023, 14, 199-216.	6.2	10
34	Data-Driven Matching Protocol for Vehicle-to-Vehicle Energy Management Considering Privacy Preservation. IEEE Transactions on Transportation Electrification, 2023, 9, 968-980.	5.3	4
35	A Three-Stage Multi-Energy Trading Strategy Based on P2P Trading Mode. IEEE Transactions on Sustainable Energy, 2023, 14, 233-241.	5.9	11
36	On the Integration of Hydrogen Into Integrated Energy Systems: Modeling, Optimal Operation, and Reliability Assessment. IEEE Open Access Journal of Power and Energy, 2022, 9, 451-464.	2.5	4

3

#	ARTICLE	IF	CITATIONS
37	Cost Evaluation of Electric Hydrogen Energy System Based on Renewable Energy Power Generation. , 2022, , .		O
38	Pricing Strategy for Energy Supplement Services of Hybrid Electric Vehicles Considering Bounded-Rationality and Energy Substitution Effect. IEEE Transactions on Smart Grid, 2023, 14, 2973-2985.	6.2	2
40	Optimal operation framework of an energy hub with combined heat, hydrogen, and power (CHHP) system based on ammonia. Energy, 2023, 266, 126407.	4.5	11
41	Integrated Energy Production Unit Capacity Optimization and Year-Round Operation Simulation. , 2022,		1
42	Optimal Scheduling of a Hydrogen-Based Energy Hub Considering a Stochastic Multi-Attribute Decision-Making Approach. Energies, 2023, 16, 631.	1.6	6
43	Techno-economic assessment of electrolytic hydrogen in China considering wind-solar-load characteristics. Frontiers in Energy Research, 0, 10, .	1.2	1
44	Peer-to-Peer Sharing of Energy Storage Systems Under Net Metering and Time-of-Use Pricing. IEEE Access, 2023, 11, 3118-3128.	2.6	5
45	Study of Long-Term Energy Storage System Capacity Configuration Based on Improved Grey Forecasting Model. IEEE Access, 2023, 11, 34977-34989.	2.6	2
46	A Novel Stackelberg-Game-Based Energy Storage Sharing Scheme Under Demand Charge. IEEE/CAA Journal of Automatica Sinica, 2023, 10, 462-473.	8.5	6
47	Market Mechanisms and Trading in Microgrid Local Electricity Markets: A Comprehensive Review. Energies, 2023, 16, 2145.	1.6	8
48	Novel Data-Driven decentralized coordination model for electric vehicle aggregator and energy hub entities in multi-energy system using an improved multi-agent DRL approach. Applied Energy, 2023, 339, 120902.	5.1	6
49	Energy management in microgrids using transactive energy control concept under high penetration of Renewables; A survey and case study. Renewable and Sustainable Energy Reviews, 2023, 176, 113161.	8.2	18
50	Multi-time-scale economic scheduling method for electro-hydrogen integrated energy system based on day-ahead long-time-scale and intra-day MPC hierarchical rolling optimization. Frontiers in Energy Research, $0,11,$	1.2	2
51	Co-optimization of integrated energy systems in the presence of renewable energy, electric vehicles, power-to-gas systems and energy storage systems with demand-side management. Clean Energy, 2023, 7, 426-435.	1.5	2
52	Multi-objective optimization of wind-hydrogen integrated energy system with aging factor. International Journal of Hydrogen Energy, 2023, 48, 23749-23764.	3.8	4
53	Green Hydrogen Energy Storage Sizing Method Based on Adversarial Learning Technology Under Inaccurate Supervision. , 2022, , .		0
54	Techno-Economic and Business aspects of Long-term Hydrogen Storage for Low Carbon Systems. , 2023, , .		0
55	Pave the Way for Hydrogen-Ready Smart Energy Hubs in Deep Renewable Energy System. , 2023, , .		1

#	Article	IF	CITATIONS
56	Charging/Refueling Navigation Strategies for Plug-in Hybrid Hydrogen and Electric Vehicles with Irrationalities and Energy Substitution. IEEE Transactions on Industrial Informatics, 2023, , 1-14.	7.2	0
60	Integrated Power and Hydrogen Trading in Multimicrogrid Coupled with Offsite Hydrogen Refueling Stations. , 2022, , .		0
62	Electric-Hydrogen Integrated Energy System Optimization Considering Ladder-Type Carbon Trading Mechanism and User-Side Flexible Load., 2023,,.		0
71	Collaborative Operation Between Power Network and Hydrogen Fueling Stations with Peer-to-Peer Energy Trading. Power Systems, 2023, , 143-182.	0.3	0
72	Coupled Multi-network Constrained Planning of Energy Supplying Facilities for Hybrid Hydrogen-Electric Vehicles. Power Systems, 2023, , 85-114.	0.3	0
77	Effect of multi-energy storage systems on improving the synergy of integrated energy system. , 2023, , .		1
79	Optimization Operation Model of Integrated Energy System in Expressway Service Area with P2G. , 2023, , .		0
82	Knowledge-Based Modeling Approach: A Schematic Design of Artificial Intelligence of Things (AloT) for Hydrogen Energy System. , 2024, , .		0
85	Hydrogen-Incorporated Sector-Coupled Smart Grids: A Systematic Review and Future Concepts. Green Energy and Technology, 2024, , 25-58.	0.4	О