Analysis of Random Access in NB-IoT Networks With Tl A Stochastic Geometry Approach

IEEE Transactions on Wireless Communications 20, 549-564

DOI: 10.1109/twc.2020.3026331

Citation Report

#	Article	IF	CITATIONS
1	Transient Analysis for Resonant Beam Charging and Communication. IEEE Internet of Things Journal, 2022, 9, 3074-3082.	8.7	1
2	A Poisson Process-Based Random Access Channel for 5G and Beyond Networks. Mathematics, 2021, 9, 508.	2.2	5
3	NB-IoT Random Access: Data-Driven Analysis and ML-Based Enhancements. IEEE Internet of Things Journal, 2021, 8, 11384-11399.	8.7	10
4	RACH Success Probability Analysis and Optimization in NB-IoT Networks. IEEE Transactions on Network Science and Engineering, 2022, 9, 4297-4309.	6.4	2
5	Performance evaluation of random access in narrow band Internet of Things. Computer Networks, 2022, 218, 109399.	5.1	0
6	CeRA-eSP: Code-Expanded Random Access to Enhance Success Probability of Massive MTC. Sensors, 2022, 22, 7959.	3.8	3
7	Uplink Performance of Narrowband Internet-of-Things Devices in Downlink–Uplink Decoupled-Based Heterogeneous Networks. Iranian Journal of Science and Technology - Transactions of Electrical Engineering, 2023, 47, 385-399.	2.3	2
8	Performance Modeling of Tags-to-WiFi Transmissions for Contention-based WiFi Backscatter Networks. , 2022, , .		O
9	Deep Reinforcement Learning-Based Grant-Free NOMA Optimization for mURLLC. IEEE Transactions on Communications, 2023, 71, 1475-1490.	7.8	7
10	IoT solution for smart water distribution networks based on a low-power wireless network, combined at the device-level: A case study. Internet of Things (Netherlands), 2023, 22, 100746.	7.7	5
11	Energy consumption analytical modeling of NB-IoT devices for diverse IoT applications. Computer Networks, 2023, 232, 109855.	5.1	2
12	Performance Analysis and Deployment Scheme for Random Access Device in 3D IIoT., 2023,,.		O
13	Joint Delay-Energy Optimization for Multi-Priority Random Access in Machine-Type Communications. IEEE Transactions on Wireless Communications, 2024, 23, 1416-1431.	9.2	0
14	Performance Evaluation of Random Access for Small Data Transmissions in Highly Dense Public and Private NB-IoT Networks., 2023,,.		0
15	Delayed Response and Random Backoff First for Low-Power Random Access of IoT Devices with Poor Channel Conditions. Sensors, 2023, 23, 9556.	3.8	0
16	Utility Maximization Based Trade-Off Policy for MEC-Enabled NB-IoT Networks in Smart Cities. , 2023, , .		0
17	Joint Optimization of Resource Allocation and SIC Ordering in Energy-Harvesting Relay-Aided NOMA NB-IoT Networks. IEEE Transactions on Green Communications and Networking, 2024, 8, 468-481.	5 . 5	0