Deep neural networks for the evaluation and design of

Nature Reviews Materials 6, 679-700 DOI: 10.1038/s41578-020-00260-1

Citation Report

#	Article	IF	CITATIONS
1	Active learning of deep surrogates for PDEs: application to metasurface design. Npj Computational Materials, 2020, 6, .	8.7	43
2	Physical Information-Embedded Deep Learning for Forward Prediction and Inverse Design of Nanophotonic Devices. Journal of Lightwave Technology, 2021, 39, 6498-6508.	4.6	6
3	Deep Learning Enabled Design of Complex Transmission Matrices for Universal Optical Components. ACS Photonics, 2021, 8, 283-295.	6.6	44
4	Design of Graphene-based Terahertz Absorbers by Artificial Intelligence. , 2021, , .		1
5	Inverse Design for Silicon Photonics: From Iterative Optimization Algorithms to Deep Neural Networks. Applied Sciences (Switzerland), 2021, 11, 3822.	2.5	41
6	Deep Learning the Electromagnetic Properties of Metamaterials—A Comprehensive Review. Advanced Functional Materials, 2021, 31, 2101748.	14.9	70
7	Inverse design of ultra-narrowband selective thermal emitters designed by artificial neural networks. Optical Materials Express, 2021, 11, 1863.	3.0	22
8	Inverse design of mode-locked fiber laser by particle swarm optimization algorithm. Scientific Reports, 2021, 11, 13555.	3.3	19
9	Design of a transmissive metasurface antenna using deep neural networks. Optical Materials Express, 2021, 11, 2310.	3.0	24
10	Machine learning for alloys. Nature Reviews Materials, 2021, 6, 730-755.	48.7	202
11	A deep learning approach to the forward prediction and inverse design of plasmonic metasurface structural color. Applied Physics Letters, 2021, 119, .	3.3	33
12	Comparison of Different Neural Network Architectures for Plasmonic Inverse Design. ACS Omega, 2021, 6, 23076-23082.	3.5	10
13	Deep Reinforcement Learning for Digital Materials Design. , 2021, 3, 1433-1439.		46
14	2022 Roadmap on integrated quantum photonics. JPhys Photonics, 2022, 4, 012501.	4.6	152
16			
	Artificial Intelligence Meets Engineered Photonic Materials: introduction to special issue. Optical Materials Express, 2021, 11, 3431.	3.0	0
17	Artificial Intelligence Meets Engineered Photonic Materials: introduction to special issue. Optical Materials Express, 2021, 11, 3431. Design of multilayer optical thin-films based on light scattering properties and using deep neural networks. Optics Express, 2021, 29, 32627.	3.0 3.4	0
17 18	Artificial Intelligence Meets Engineered Photonic Materials: introduction to special issue. Optical Materials Express, 2021, 11, 3431. Design of multilayer optical thin-films based on light scattering properties and using deep neural networks. Optics Express, 2021, 29, 32627. Multiplexed supercell metasurface design andÂoptimization with tandem residual networks. Nanophotonics, 2021, 10, 1133-1143.	3.0 3.4 6.0	0 7 46

#	Article	IF	CITATIONS
20	Basic Principles of Unveiling Electromagnetic Problems Based on Deep Learning. , 2022, , 23-41.		0
21	A mixture-density-based tandem optimization network for on-demand inverse design of thin-film high reflectors. Nanophotonics, 2021, 10, 4057-4065.	6.0	18
22	Multi-class, multi-functional designÂof photonic topological insulators by rational symmetry-indicators engineering. Nanophotonics, 2021, 10, 4523-4531.	6.0	21
23	Deep learning-based designÂof broadband GHz complex and random metasurfaces. APL Photonics, 2021, 6, .	5.7	8
24	Inverse designÂof grating couplers using the policy gradient method from reinforcement learning. Nanophotonics, 2021, 10, 3843-3856.	6.0	17
25	Machine-Learning-Assisted Acoustic Consecutive Fano Resonances: Application to a Tunable Broadband Low-Frequency Metasilencer. Physical Review Applied, 2021, 16, .	3.8	15
26	Guided mode meta-optics: metasurface-dressed waveguides for arbitrary mode couplers and on-chip OAM emitters with a configurable topological charge. Optics Express, 2021, 29, 39406.	3.4	13
27	Dimensionality reduction for the on-chip integration of advanced photonic devices and functionalities. , 2021, , .		0
28	Optical meta-waveguides for integrated photonics and beyond. Light: Science and Applications, 2021, 10, 235.	16.6	196
29	Chirality-selective all-dielectric metasurface structural color display. Optics Express, 2021, 29, 41258.	3.4	13
30	Optimization of optical waveguide antennas for directive emission of light. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 83.	2.1	5
31	Physics-Informed Neural Networks with Hard Constraints for Inverse Design. SIAM Journal of Scientific Computing, 2021, 43, B1105-B1132.	2.8	167
32	Leveraging AI in Photonics and Beyond. Photonics, 2022, 9, 75.	2.0	8
33	Computational spectrometers enabled by nanophotonics and deep learning. Nanophotonics, 2022, 11, 2507-2529.	6.0	33
34	Free-form optimization of nanophotonic devices: from classical methods to deep learning. Nanophotonics, 2022, 11, 1809-1845.	6.0	38
35	Deep Learning Enabled Strategies for Modeling of Complex Aperiodic Plasmonic Metasurfaces of Arbitrary Size. ACS Photonics, 2022, 9, 575-585.	6.6	17
36	Deep Learning for Photonic Design and Analysis: Principles and Applications. Frontiers in Materials, 2022, 8, .	2.4	8
37	Intelligent on-demand design of phononic metamaterials. Nanophotonics, 2022, 11, 439-460.	6.0	55

#	Article	IF	CITATIONS
38	Manifold Learning for Knowledge Discovery and Intelligent Inverse Design of Photonic Nanostructures: Breaking the Geometric Complexity. ACS Photonics, 2022, 9, 714-721.	6.6	25
39	Benchmarking deep learning-based models on nanophotonic inverse design problems. , 2022, 1, 210012-210012.		43
40	Deep learning for the design and characterization of high efficiency self-focusing grating. Optics Communications, 2022, 510, 127951.	2.1	3
41	Photonics and thermodynamics concepts in radiative cooling. Nature Photonics, 2022, 16, 182-190.	31.4	187
42	Photonic matrix multiplication lights up photonic accelerator and beyond. Light: Science and Applications, 2022, 11, 30.	16.6	167
43	Deep Learning for the Modeling and Inverse Design of Radiative Heat Transfer. Physical Review Applied, 2021, 16, .	3.8	20
44	A learning based approach for designing extended unit cell metagratings. Nanophotonics, 2022, 11, 345-358.	6.0	8
45	CGC-NET: Aircraft Detection in Remote Sensing Images Based on Lightweight Convolutional Neural Network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 2805-2815.	4.9	0
46	Instantaneous Property Prediction and Inverse Design of Plasmonic Nanostructures Using Machine Learning: Current Applications and Future Directions. Nanomaterials, 2022, 12, 633.	4.1	9
47	Nonlinear optical response of inverse-designed integrated photonic devices. Optics Letters, 2022, 47, 1254.	3.3	3
48	Machineâ€Engineered Active Disorder for Digital Photonics. Advanced Optical Materials, 2022, 10, 2102642.	7.3	1
49	Physics-informed recurrent neural network for time dynamics in optical resonances. Nature Computational Science, 2022, 2, 169-178.	8.0	7
50	Deep learning modeling strategy for material science: from natural materials to metamaterials. JPhys Materials, 2022, 5, 014003.	4.2	6
51	Enhancing adjoint optimization-based photonics inverse design with explainable machine learning. , 2022, , .		0
52	Deep learning for topological photonics. Advances in Physics: X, 2022, 7, .	4.1	10
53	Spectral emissivity modeling in multi-resonant systems using coupled-mode theory. Optics Express, 2022, 30, 9463.	3.4	7
54	Inverse design of two-dimensional materials with invertible neural networks. Npj Computational Materials, 2021, 7, .	8.7	15
55	Optimizing Startshot Lightsail Design: A Generative Network-Based Approach. ACS Photonics, 2022, 9, 190-196.	6.6	8

ARTICLE IF CITATIONS # Machine learning framework for quantum sampling of highly constrained, continuous optimization 11.3 14 56 problems. Applied Physics Reviews, 2021, 8, . Hearing the shape of a drum for light: isospectrality in photonics. Nanophotonics, 2022, 11, 2763-2778. 6.0 Research on Wastewater Treatment Monitoring Algorithms Based on Deep Convolutional Neural 58 1.2 0 Networks. Wireless Communications and Mobile Computing, 2022, 2022, 1-11. Automatic optical structure optimization method of the laser triangulation ranging system under the 59 Scheimpflug rule. Optics Express, 2022, 30, 18667. Smart and Rapid Design of Nanophotonic Structures by an Adaptive and Regularized Deep Neural 60 4.1 6 Network. Nanomaterials, 2022, 12, 1372. Broadband optical Ta₂O₅ antennas for directional emission of light. Optics Express, 2022, 30, 19288. 3.4 Antenna Design Using a GAN-Based Synthetic Data Generation Approach. IEEE Open Journal of Antennas 62 3.7 2 and Propagation, 2022, 3, 488-494. Metasurfaces Design Based on Dnn and Lightgbm Algorithms. SSRN Electronic Journal, 0, , . 0.4 Deep Neural Network with Data Cropping Algorithm for Absorptive Frequencyâ€Selective Transmission 64 7.3 8 Metasurface. Advanced Optical Materials, 2022, 10, . Materials Data toward Machine Learning: Advances and Challenges. Journal of Physical Chemistry 4.6 Letters, 2022, 13, 3965-3977. NEUTRON: Neural particle swarm optimization for material-aware inverse design of structural color. 66 4.1 5 IScience, 2022, 25, 104339. Enhancing Adjoint Optimization-Based Photonic Inverse Design with Explainable Machine Learning. ACS 6.6 Photonics, 2022, 9, 1577-1585. Intelligent metasurfaces: control, communication and computing. ELight, 2022, 2, . 68 23.9 158 Prediction of electrical properties of FDSOI devices based on deep learning. Nanotechnology, 2022, 33, 2.6 335203. Reconfiguring Magnetic Infrared Resonances with the Plasmonic Phase-Change Material 70 6.6 11 In₃SbTe₂. ACS Photonics, 2022, 9, 1821-1828. Genetic algorithm assisted bridge fiber design and fabrication for few-mode multi-core fiber Fan-in/Fan-out device. Optics Express, 2022, 30, 19042. Inverse design enables large-scale high-performance meta-optics reshaping virtual reality. Nature 72 12.8 82 Communications, 2022, 13, 2409. Inverse design of structural color: finding multiple solutions <i>via</i> conditional generative adversarial networks. Nanophotonics, 2022, 11, 3057-3069.

#	Article	IF	CITATIONS
74	Learning the Physics of Allâ€Dielectric Metamaterials with Deep Lorentz Neural Networks. Advanced Optical Materials, 2022, 10, .	7.3	13
75	Physics-Guided Neural-Network-Based Inverse Design of a Photonic – Plasmonic Nanodevice for Superfocusing. ACS Applied Materials & Interfaces, 2022, 14, 27397-27404.	8.0	4
76	Measurements of near-surface radial profiles of electrophysical characteristics of cylindrical objects by the eddy current method using a priori data. Ukrainian Metrological Journal, 2022, , 5-11.	0.1	0
77	Optical tweezers across scales in cell biology. Trends in Cell Biology, 2022, 32, 932-946.	7.9	9
78	Empowering Metasurfaces with Inverse Design: Principles and Applications. ACS Photonics, 2022, 9, 2178-2192.	6.6	53
79	Heterogeneous Transferâ€Learningâ€Enabled Diverse Metasurface Design. Advanced Optical Materials, 2022, 10, .	7.3	19
80	Deep learning in light–matter interactions. Nanophotonics, 2022, 11, 3189-3214.	6.0	10
81	Nonlinear multimode photonics: nonlinear optics with many degrees of freedom. Optica, 2022, 9, 824.	9.3	26
82	Long short-term memory neural network for directly inverse design of nanofin metasurface. Optics Letters, 2022, 47, 3239.	3.3	4
83	Light–Matter Interactions in Hybrid Material Metasurfaces. Chemical Reviews, 2022, 122, 15177-15203.	47.7	42
84	The accelerated design of the nanoantenna arrays by deep learning. Nanotechnology, 2022, 33, 485204.	2.6	1
85	Application and Thinking of Artificial Intelligence in Electrical Automation. Wireless Communications and Mobile Computing, 2022, 2022, 1-6.	1.2	1
86	Magnetically Actuated Reconfigurable Metamaterials as Conformal Electromagnetic Filters. Advanced Intelligent Systems, 2022, 4, .	6.1	14
87	Photonic Emulator for Inverse Design. ACS Photonics, 2023, 10, 2173-2181.	6.6	9
88	New customer-oriented design concept evaluation by using improved Z-number-based multi-criteria decision-making method. Advanced Engineering Informatics, 2022, 53, 101683.	8.0	11
89	Homeostatic neuro-metasurfaces for dynamic wireless channel management. Science Advances, 2022, 8, .	10.3	34
90	Deep-learning-assisted communication capacity enhancement by non-orthogonal state recognition of structured light. Optics Express, 2022, 30, 29781.	3.4	14
91	Deep reinforcement learning with a critic-value-based branch tree for the inverse design of two-dimensional optical devices. Applied Soft Computing Journal, 2022, 127, 109386.	7.2	8

#	Article	IF	CITATIONS
92	Cascade integration of nonlinear phenomena exhibited by monometallic nanoparticles. Journal of Physics: Conference Series, 2022, 2313, 012016.	0.4	0
93	A Multivariate Evaluation Model of Physical Education Teaching Quality with Random Matrix Optimization Neural Network. Mathematical Problems in Engineering, 2022, 2022, 1-11.	1.1	1
94	Algorithm-Driven Paradigms for Freeform Optical Engineering. ACS Photonics, 2022, 9, 2860-2871.	6.6	6
95	Toward Highâ€Efficiency Ultrahigh Numerical Aperture Freeform Metalens: From Vector Diffraction Theory to Topology Optimization. Laser and Photonics Reviews, 2022, 16, .	8.7	26
96	High Speed Simulation and Freeform Optimization of Nanophotonic Devices with Physics-Augmented Deep Learning. ACS Photonics, 2022, 9, 3110-3123.	6.6	25
97	Strategical Deep Learning for Photonic Bound States in the Continuum. Laser and Photonics Reviews, 2022, 16, .	8.7	9
98	Tailoring the Thicknessâ€Dependent Optical Properties of Conducting Nitrides and Oxides for Epsilonâ€Nearâ€Zeroâ€Enhanced Photonic Applications. Advanced Materials, 2023, 35, .	21.0	3
99	Transfer-Learning-Assisted Inverse Metasurface Design for 30% Data Savings. Physical Review Applied, 2022, 18, .	3.8	14
100	A miniaturized computational spectrometer with optimum number of nanophotonic filters: Deep-learning autoencoding and inverse design-based implementation. Photonics and Nanostructures - Fundamentals and Applications, 2022, 52, 101057.	2.0	4
101	Inverse design in flat optics. Photonics and Nanostructures - Fundamentals and Applications, 2022, 52, 101074.	2.0	5
102	Inverse design with flexible design targets via deep learning: Tailoring of electric and magnetic multipole scattering from nano-spheres. Photonics and Nanostructures - Fundamentals and Applications, 2022, 52, 101066.	2.0	9
103	Deep learning for non-parameterized MEMS structural design. Microsystems and Nanoengineering, 2022, 8, .	7.0	12
104	Security Analysis of Social Network Topic Mining Using Big Data and Optimized Deep Convolutional Neural Network. Computational Intelligence and Neuroscience, 2022, 2022, 1-12.	1.7	0
105	Scalableâ€Manufactured Plasmonic Metamaterial with Omnidirectional Absorption Bandwidth across Visible to Farâ€Infrared. Advanced Functional Materials, 2022, 32, .	14.9	9
106	Prediction of metasurface spectral response based on a deep neural network. Optics Letters, 2022, 47, 5092.	3.3	4
107	Inverse design of plasma metamaterial devices with realistic elements. Journal Physics D: Applied Physics, 2022, 55, 465203.	2.8	3
108	Machine learning and deep learning in phononic crystals and metamaterials – A review. Materials Today Communications, 2022, 33, 104606.	1.9	29
109	Challenges, Opportunities, and Prospects in Metal Halide Perovskites from Theoretical and Machine Learning Perspectives. Advanced Energy Materials, 2022, 12, .	19.5	19

#	Article	IF	CITATIONS
110	On the use of artificial neural networks in topology optimisation. Structural and Multidisciplinary Optimization, 2022, 65, .	3.5	46
111	DeepAdjoint: An All-in-One Photonic Inverse Design Framework Integrating Data-Driven Machine Learning with Optimization Algorithms. ACS Photonics, 0, , .	6.6	3
112	The reverse design of a tunable terahertz metasurface antenna based on a deep neural network. Microwave and Optical Technology Letters, 0, , .	1.4	1
113	Deep inverse photonic design: A tutorial. Photonics and Nanostructures - Fundamentals and Applications, 2022, 52, 101070.	2.0	6
114	Inverse design of nanophotonics devices and materials. Photonics and Nanostructures - Fundamentals and Applications, 2022, 52, 101084.	2.0	7
115	Fast Topology Optimization for Near-Field Focusing All-Dielectric Metasurfaces Using the Discrete Dipole Approximation. ACS Nano, 2022, 16, 18951-18958.	14.6	5
116	Transfer Learning for Modeling Plasmonic Nanowire Waveguides. Nanomaterials, 2022, 12, 3624.	4.1	0
117	A Generative Metaâ€Atom Model for Metasurfaceâ€Based Absorber Designs. Advanced Optical Materials, 2023, 11, .	7.3	5
118	Optimization of Structural Parameters of PCF Polarization Filter by a Genetic Algorithm. IEEE Photonics Journal, 2022, 14, 1-9.	2.0	5
119	A Precise Bare Simulation Approach to the Minimization of Some Distances. I. Foundations. IEEE Transactions on Information Theory, 2023, 69, 3062-3120.	2.4	2
120	Inverse design of core-shell particles with discrete material classes using neural networks. Scientific Reports, 2022, 12, .	3.3	3
121	Exploiting geometric biases in inverse nano-optical problems using artificial neural networks. Optics Express, 2022, 30, 45365.	3.4	2
122	Optimized optical/electrical/mechanical properties of ultrathin metal films for flexible transparent conductor applications: review [Invited]. Optical Materials Express, 2023, 13, 304.	3.0	7
123	Inverse design of truss lattice materials with superior buckling resistance. Npj Computational Materials, 2022, 8, .	8.7	23
124	Predicting strongly localized resonant modes of light in disordered arrays of dielectric scatterers: a machine learning approach. Optics Express, 2023, 31, 826.	3.4	1
125	Reaching the Full Potential of Machine Learning in Mitigating Environmental Impacts of Functional Materials. Reviews of Environmental Contamination and Toxicology, 2022, 260, .	1.3	1
126	Computation at the speed of light: metamaterials for all-optical calculations and neural networks. Advanced Photonics, 2022, 4, .	11.8	24
127	Neural Inverse Design of Nanostructures (NIDN). Scientific Reports, 2022, 12, .	3.3	1

#	Article	IF	CITATIONS
128	Inverse design of an on-chip optical response predictor enabled by a deep neural network. Optics Express, 2023, 31, 2049.	3.4	8
129	A deep transfer learning-based protocol accelerates full quantum mechanics calculation of protein. Briefings in Bioinformatics, 2023, 24, .	6.5	3
130	POViT: Vision Transformer for Multi-Objective Design and Characterization of Photonic Crystal Nanocavities. Nanomaterials, 2022, 12, 4401.	4.1	3
131	Super-resolution image display using diffractive decoders. Science Advances, 2022, 8, .	10.3	15
132	Tunable Metasurface Based on Plasmonic Quasi Bound State in the Continuum Driven by Metallic Quantum Wells. Advanced Optical Materials, 2023, 11, .	7.3	5
133	Machine and quantum learning for diamond-based quantum applications. Materials for Quantum Technology, 2023, 3, 012001.	3.1	2
134	Broad-angle coherent perfect absorption-lasing and super-collimation in two-dimensional non-Hermitian photonic crystals. Optics Express, 2023, 31, 2112.	3.4	1
135	Deep reinforcement learning empowers automated inverse design and optimization of photonic crystals for nanoscale laser cavities. Nanophotonics, 2023, 12, 319-334.	6.0	9
136	Compatible Stealth Metasurface for Laser and Infrared with Radiative Thermal Engineering Enabled by Machine Learning. Advanced Functional Materials, 2023, 33, .	14.9	7
137	Machine learning for knowledge acquisition and accelerated inverse-design for non-Hermitian systems. Communications Physics, 2023, 6, .	5.3	4
138	Inverse design meets nanophotonics: From computational optimization to artificial neural network. , 2023, , 3-32.		3
139	Meshless optical mode solving using scalable deep deconvolutional neural network. Scientific Reports, 2023, 13, .	3.3	0
140	Inverse Design of Photonic Crystal Filters with Arbitrary Correlation and Size for Accurate Spectrum Reconstruction. Applied Optics, 0, , .	1.8	0
141	Metric Learning: Harnessing the Power of Machine Learning in Nanophotonics. ACS Photonics, 2023, 10, 900-909.	6.6	8
142	Analysis and design of transition radiation in layered uniaxial crystals using Tandem neural networks. Journal of the Optical Society of America B: Optical Physics, 0, , .	2.1	0
143	Deep learning for the design of phononic crystals and elastic metamaterials. Journal of Computational Design and Engineering, 2023, 10, 602-614.	3.1	9
144	The 2023 terahertz science and technology roadmap. Journal Physics D: Applied Physics, 2023, 56, 223001.	2.8	103
145	Metasurface meta-atoms design based on DNN and LightGBM algorithms. Optical Materials, 2023, 136, 113471.	3.6	6

ARTICLE IF CITATIONS # Physics Compliance as a Metric for Neural Network Uncertainty., 2022,,. 0 146 Optical Neural Network Architecture for Deep Learning with Temporal Synthetic Dimension. Chinese 3.3 Physics Letters, 2023, 40, 034201. Pollution level mapping of heavy metal in soil for ground-airborne hyperspectral data with support vector machine and deep neural network: A case study of Southwestern Xiong'an, China. 148 7.5 6 Environmental Pollution, 2023, 321, 121132. 149 Predicting nonlinear optical scattering with physics-driven neural networks. APL Photonics, 2023, 8, . A Model-Constrained Tangent Slope Learning Approach for Dynamical Systems. International Journal 150 1.2 0 of Computational Fluid Dynamics, 2022, 36, 655-685. On the influence of over-parameterization in manifold based surrogates and deep neural operators. Journal of Computational Physics, 2023, 479, 112008. 3.8 MoS₂ as Nonlinear Optical Material for Optical Neural Networks. IEEE Journal of 152 2.9 3 Selected Topics in Quantum Electronics, 2023, 29, 1-7. Structural color generation: from layered thin films to optical metasurfaces. Nanophotonics, 2023, 6.0 19 12, 1019-1081. Designing radiative cooling metamaterials for passive thermal management by particle swarm 154 2 1.4 optimization. Chinese Physics B, 2023, 32, 057802. Deep learning accelerated discovery of photonic power dividers. Nanophotonics, 2023, 12, 1255-1269. 6.0 Grid-wise simulation acceleration of the electromagnetic fields of 2D optical devices using 156 3.3 6 super-resolution. Scientific Reports, 2023, 13, . On Chip Polarization Beam Splitter Based on Inverse Design. Journal of Physics: Conference Series, 0.4 2023, 2464, 012019. Group refractive index via auto-differentiation and neural networks. Scientific Reports, 2023, 13, . 158 3.3 1 Deep-Learning-Enabled Applications in Nanophotonics. Springer Series in Optical Sciences, 2023, , 159 141-156. Deep neural network training method based on vectorgraphs for designing of metamaterial 160 3.3 0 broadband polarization converters. Scientific Reports, 2023, 13, . Deep-Learning-Assisted Inverse Design in Nanophotonics. Springer Series in Optical Sciences, 2023, , 113-140. A knowledge-inherited learning for intelligent metasurface design and assembly. Light: Science and 162 16.6 16 Applications, 2023, 12, . A deep neural network for general scattering matrix. Nanophotonics, 2023, 12, 2583-2591.

#	Article	IF	CITATIONS
164	Revolutionary meta-imaging: from superlens to metalens. , 2023, 2, R01.		21
165	Software-defined nanophotonic devices and systems empowered by machine learning. Progress in Quantum Electronics, 2023, 89, 100469.	7.0	10
166	Physics-Aware Predictive Models for Tunable Photonics Devices. , 2022, , .		0
167	Artificial Intelligence in Material Engineering: A Review on Applications of Artificial Intelligence in Material Engineering. Advanced Engineering Materials, 2023, 25, .	3.5	5
168	Allâ€Opticalâ€Controlled Excitatory and Inhibitory Synaptic Signaling through Bipolar Photoresponse of an Oxideâ€Based Phototransistor. Advanced Optical Materials, 2023, 11, .	7.3	5
169	A Novel Two-Stage Deep Learning Model for Network Intrusion Detection: LSTM-AE. IEEE Access, 2023, 11, 37131-37148.	4.2	15
170	Nonlinear absorption of 2D materials and their application in optical neural networks. Journal of the Optical Society of America B: Optical Physics, 0, , .	2.1	0
171	Inverse design of dispersion for photonic devices based on LSTM and gradient-free optimization algorithms hybridization. Journal of the Optical Society of America B: Optical Physics, 2023, 40, 1525.	2.1	0
172	Nonvolatile Tunable Wavelengthâ€Selective Emitter with Phaseâ€Changing Material Ge ₂ Sb ₂ Te ₅ Designed by Bayesian Optimization Method. Physica Status Solidi - Rapid Research Letters, 2023, 17, .	2.4	0
173	Design of electromagnetic metasurface using two dimensional crystal nets. Scientific Reports, 2023, 13, .	3.3	1
174	A universal route to efficient non-linear response via Thomson scattering in linear solids. National Science Review, 2023, 10, .	9.5	4
175	Predicting Broadband Resonator-Waveguide Coupling for Microresonator Frequency Combs through Fully Connected and Recurrent Neural Networks and Attention Mechanism. ACS Photonics, 2023, 10, 1795-1805.	6.6	2
176	Integrated photonic platforms for quantum technology: a review. ISSS Journal of Micro and Smart Systems, 2023, 12, 83-104.	2.0	1
178	Environmentally Sustainable and Multifunctional Chrome-like Coatings Having No Chromium Designed with Reinforcement Learning. ACS Applied Materials & Interfaces, 2023, 15, 28772-28780.	8.0	1
179	Computer-Aided Design of Hand-Drawn art Food Packaging Design Based on Deep Neural Network Model. Applied Mathematics and Nonlinear Sciences, 2023, 8, 2043-2052.	1.6	0
180	Inverse design of plasmonic nanoantenna using generative adversarial network. Nanotechnology, 2023, 34, 365204.	2.6	3
181	Recent applications of machine learning in alloy design: A review. Materials Science and Engineering Reports, 2023, 155, 100746.	31.8	11
182	ä≌å·¥æ™èf1⁄2赋èf1⁄2æ;€å‰ï1⁄4šçŽ°çŠ¶ã€æœºé≢与挑æ~. Zhongguo Jiguang/Chinese Journal of Lasers, 2	02 3, 250, 1	101001.

		PORT	
#	Article	IF	CITATIONS
183	Perovskite micro-/nanoarchitecture for photonic applications. Matter, 2023, 6, 3165-3219.	10.0	4
184	Arbitrary Multifunctional Vortex Beam Designed by Deep Neural Network. Advanced Optical Materials, 2024, 12, .	7.3	1
185	Accurate and efficient prediction of photonic crystal waveguide bandstructures using neural networks. , 2023, 2, 1479.		0
186	Data-driven multi-valley dark solitons of multi-component Manakov Model using Physics-Informed Neural Networks. Chaos, Solitons and Fractals, 2023, 172, 113509.	5.1	5
187	GRIDS-Net: Inverse shape design and identification of scatterers via geometric regularization and physics-embedded deep learning. Computer Methods in Applied Mechanics and Engineering, 2023, 414, 116167.	6.6	2
188	Metasurface-empowered optical cryptography. Materials Today, 2023, 67, 424-445.	14.2	11
189	Deepâ€Learningâ€Enabled Intelligent Design of Thermal Metamaterials. Advanced Materials, 2023, 35, .	21.0	3
190	Z-preference-based multi-criteria decision-making for design concept evaluation highlighting customer confidence attitude. Soft Computing, 2023, 27, 12329-12351.	3.6	0
191	Deep Learning and Adjoint Method Accelerated Inverse Design in Photonics: A Review. Photonics, 2023, 10, 852.	2.0	2
194	Dual-band optical collimator based on deep-learning designed, fabrication-friendly metasurfaces. Nanophotonics, 2023, 12, 3491-3499.	6.0	1
195	Artificial neural networks for photonic applications—from algorithms to implementation: tutorial. Advances in Optics and Photonics, 2023, 15, 739.	25.5	6
196	Recent developments in Chalcogenide phase change material-based nanophotonics. Nanotechnology, 0, , .	2.6	0
198	Correlating metasurface spectra with a generation-elimination framework. Nature Communications, 2023, 14, .	12.8	6
199	End-to-End Diverse Metasurface Design and Evaluation Using an Invertible Neural Network. Nanomaterials, 2023, 13, 2561.	4.1	1
200	Machine learning assisted intelligent design of meta structures: a review. , 0, 3, .		2
201	Research on accelerated coding absorber design with deep learning. Physica Scripta, 2023, 98, 096003.	2.5	1
202	Polarization Multi-Image Synthesis with Birefringent Metasurfaces. , 2023, , .		1
203	Recent Progress in Siliconâ€Based Photonic Integrated Circuits and Emerging Applications. Advanced Optical Materials, 2023, 11, .	7.3	2

	CITATION	Report	
#	Article	IF	CITATIONS
204	Inverse design and experimental realization of plasma metamaterials. Physical Review Applied, 2023, 20, .	3.8	0
205	Inverse design of all-dielectric metasurfaces with accidental bound states in the continuum. Nanophotonics, 2023, 12, 3767-3779.	6.0	3
206	Infrared bound states in the continuum: random forest method. Optics Letters, 2023, 48, 4460.	3.3	1
207	Prediction of complex strain fields in concrete using a deep learning approach. Construction and Building Materials, 2023, 404, 133257.	7.2	0
208	Disordered optical metasurfaces: from light manipulation to energy harvesting. Advances in Physics: X, 2023, 8, .	4.1	0
209	Morphogenetic metasurfaces: unlocking the potential of turing patterns. Nature Communications, 2023, 14, .	12.8	0
210	Machine learning assisted inverse design on mechanically tunable lateral hybrid metasurface. , 2023, , .		0
211	Diverse ranking metamaterial inverse design based on contrastive and transfer learning. Optics Express, 2023, 31, 32865.	3.4	0
212	In Silico Design of Freeform Solar Cell Structures from Highâ€Throughput Artificial Intelligenceâ€Generated Configurations. Solar Rrl, 2023, 7, .	5.8	0
213	Artificial Intelligence-Assisted Robustness of Optoelectronics for Automated Driving: A Review. IEEE Transactions on Intelligent Transportation Systems, 2024, 25, 57-73.	8.0	1
214	Calculation of Optimum Transit Times with Real-Coded Genetic Algorithm. , 2023, 13, 833-842.		0
216	Deep Neural Network for Performance Prediction of Silicon Mode Splitter. Lecture Notes in Electrical Engineering, 2023, , 775-781.	0.4	0
217	Deep Learning for Targeted Treatment. Studies in Computational Intelligence, 2023, , 173-189.	0.9	0
218	Scientific Computing with Diffractive Optical Neural Networks. Advanced Intelligent Systems, 2023, 5, .	6.1	2
219	Performance-Based Generative Design for Parametric Modeling of Engineering Structures Using Deep Conditional Generative Models. Automation in Construction, 2023, 156, 105128.	9.8	0
220	Interpretable inverse-designed cavity for on-chip nonlinear photon pair generation. Optica, 2023, 10, 1529.	9.3	2
221	Predictability of machine learning framework in cross-section data. Open Physics, 2023, 21, .	1.7	0
222	Time-Domain Topology Optimization of Arbitrary Dispersive Materials for Broadband 3D Nanophotonics Inverse Design. ACS Photonics, 2023, 10, 3875-3887.	6.6	1

#	Article	IF	Citations
223	Advances in materials informatics for tailoring thermal radiation: A perspective review. , 2024, 2, 100078.		0
224	Physics-data-driven intelligent optimization for large-aperture metalenses. Opto-Electronic Advances, 2023, 6, 230133-230133.	13.3	7
225	Neural network assisted high-spatial-resolution polarimetry with non-interleaved chiral metasurfaces. Light: Science and Applications, 2023, 12, .	16.6	2
226	Strength and manufacturability enhancement of a composite automotive component via an integrated finite element/artificial neural network multi-objective optimization approach. Composite Structures, 2024, 327, 117694.	5.8	1
227	Metasurfaces for near-eye display applications. , 2023, 2, 230025-230025.		1
228	Wide-angle and high-efficiency acoustic retroreflectors enabled by many-objective optimization algorithm and deep learning models. Physical Review Materials, 2023, 7, .	2.4	2
229	System parameter optimization with improved genetic algorithm for laser triangulation sensors. , 2023, , .		0
230	Real-data-driven real-time reconfigurable microwave reflective surface. Nature Communications, 2023, 14, .	12.8	0
231	A newcomer's guide to deep learning for inverse design in nano-photonics. Nanophotonics, 2023, 12, 4387-4414.	6.0	5
232	Simulation-efficient Modeling of Light Propagation using Neural Networks. , 2023, , .		Ο
233	Ultra-low loss SOI waveguide crossings designed by a hybrid global optimization based on deep learning. Optics Communications, 2023, , 130189.	2.1	0
234	Design of compact and low-loss S-bends by CMA-ES. Optics Express, 2023, 31, 43850.	3.4	Ο
235	Deep Learning in Computational Design Synthesis: A Comprehensive Review. Journal of Computing and Information Science in Engineering, 0, , 1-39.	2.7	0
236	Designing Metasurfaces for Efficient Solar Energy Conversion. ACS Photonics, 0, , .	6.6	1
237	Waveguide-based augmented reality displays: perspectives and challenges. ELight, 2023, 3, .	23.9	7
238	Auxiliary physics-informed neural networks for forward, inverse, and coupled radiative transfer problems. Applied Physics Letters, 2023, 123, .	3.3	0
239	Deep learning for nano-photonic materials – The solution to everything!?. Current Opinion in Solid State and Materials Science, 2024, 28, 101129.	11.5	0
240	Potential of photonic crystal fiber for designing optical devices for telecommunication networks. Optical and Quantum Electronics, 2024, 56, .	3.3	0

#	Article	IF	CITATIONS
241	Topological Learning for the Classification of Disorder: An Application to the Design of Metasurfaces. ACS Nano, 0, , .	14.6	0
242	Experiment-based deep learning approach for power allocation with a programmable metasurface. , 2023, 1, .		Ο
243	A New Instrument for Measuring Customers' Perceptions of Service Warmth: A Big Data and Machine Learning Approach. SAGE Open, 2023, 13, .	1.7	0
244	Predictive Modeling of Light–Matter Interaction in One Dimension: A Dynamic Deep Learning Approach. Applied System Innovation, 2024, 7, 4.	4.6	0
245	Adjoint-based optimization of dielectric coatings for refractory metals to achieve broadband spectral reflection. Journal of the Optical Society of America B: Optical Physics, 2024, 41, A98.	2.1	0
246	Machine Learning-Based Predictive Modeling for Designing Transmon Superconducting Qubits. , 2023, ,		0
247	Deep Learning Design for Multiwavelength Infrared Image Sensors Based on Dielectric Freeform Metasurface. Advanced Optical Materials, 2024, 12, .	7.3	0
248	An Efficient Design Method for a Metasurface Polarizer with High Transmittance and Extinction Ratio. Photonics, 2024, 11, 53.	2.0	0
249	Quasibound states in the continuum in photonic crystal based optomechanical microcavities. Physical Review B, 2024, 109, .	3.2	0
250	Multi-solution inverse design in photonics using generative modeling. Journal of the Optical Society of America B: Optical Physics, 2024, 41, A152.	2.1	0
251	Parallel edge extraction operators on chip speed up photonic convolutional neural networks. Optics Letters, 2024, 49, 838.	3.3	0
252	Neuromorphic models applied to photonics. , 2024, , 221-253.		Ο
253	Recent progress on inverse design for integrated photonic devices: methodology and applications. Journal of Nanophotonics, 2024, 18, .	1.0	0
254	<tt>TNet</tt> : A Model-Constrained Tikhonov Network Approach for Inverse Problems. SIAM Journal of Scientific Computing, 2024, 46, C77-C100.	2.8	0
255	The Intelligent Design of Silicon Photonic Devices. Advanced Optical Materials, 2024, 12, .	7.3	0
256	Inverse design in photonic crystals. Nanophotonics, 2024, 13, 1219-1237.	6.0	1
257	Optical computing metasurfaces: applications and advances. Nanophotonics, 2024, 13, 419-441.	6.0	0
258	Predicting optical properties of different photonic crystal fibers from 2D structural images using convolutional neural network and transfer learning. Optics Communications, 2024, 558, 130363.	2.1	0

#	Article	IF	CITATIONS
259	Hybrid supervised and reinforcement learning for the design and optimization of nanophotonic structures. Optics Express, 2024, 32, 9920.	3.4	0
260	Spectral transfer-learning-based metasurface design assisted by complex-valued deep neural network. , 2024, 3, .		0
261	The Use of Recurrent Neural Networks in the Optimization of Computer Science Algorithms. , 2023, , .		0
262	Design of Planar Multilayer Devices for Optical Filtering Using Surrogate Model Based on Artificial Neural Network. Optics, 2024, 5, 121-132.	1.2	0
263	Neuromorphic Optical Data Storage Enabled by Nanophotonics: A Perspective. ACS Photonics, 2024, 11, 874-891.	6.6	0
264	Flexibly Designable 2D Chiral Metasurfaces with Pixelated Topological Structure Based on Machine Learning. Laser and Photonics Reviews, 0, , .	8.7	0
265	Ultrahigh performance passive radiative cooling by hybrid polar dielectric metasurface thermal emitters. Opto-Electronic Advances, 2024, 7, 230194-230194.	13.3	0