The COVID-19 pandemic: a target for surfactant therapy

Expert Review of Respiratory Medicine 15, 597-608

DOI: 10.1080/17476348.2021.1865809

Citation Report

#	Article	IF	CITATIONS
1	Use of exogenous pulmonary surfactant in acute respiratory distress syndrome (ARDS): Role in SARS-CoV-2-related lung injury. Respiratory Physiology and Neurobiology, 2021, 288, 103645.	0.7	23
2	Face masks against COVID-19: Standards, efficacy, testing and decontamination methods. Advances in Colloid and Interface Science, 2021, 292, 102435.	7.0	74
3	Roles of steroid receptors in the lung and COVID-19. Essays in Biochemistry, 2021, 65, 1025-1038.	2.1	11
4	Pulmonary Surfactant: A Unique Biomaterial with Life-saving Therapeutic Applications. Current Medicinal Chemistry, 2022, 29, 526-590.	1.2	9
5	Interaction of cationic surfactant with acid yellow dye in absence/presence of organic and inorganic additives: conductivity and dye solubilization methods. Zeitschrift Fur Physikalische Chemie, 2021, .	1.4	1
6	Using different machine learning models to classify patientsÂintoÂmild and severe cases of COVIDâ€19 based on multivariate blood testing. Journal of Medical Virology, 2022, 94, 357-365.	2.5	9
7	Surfactants – Compounds for inactivation of SARS-CoV-2 and other enveloped viruses. Current Opinion in Colloid and Interface Science, 2021, 55, 101479.	3.4	30
8	Pulmonary surfactant as a versatile biomaterial to fight COVID-19. Journal of Controlled Release, 2022, 342, 170-188.	4.8	20
9	Translational Biophysics – 20th IUPAB Congress Session Commentary. Biophysical Reviews, 2021, 13, 875-877.	1.5	1
10	Evaluating the Impact of Hydrophobic Silicon Dioxide in the Interfacial Properties of Lung Surfactant Films. Environmental Science & Echnology, 2022, 56, 7308-7318.	4.6	8
11	Clinical characteristics and histopathology of COVID-19 related deaths in South African adults. PLoS ONE, 2022, 17, e0262179.	1.1	8
12	Fluid Films as Models for Understanding the Impact of Inhaled Particles in Lung Surfactant Layers. Coatings, 2022, 12, 277.	1.2	7
13	A recipe for a good clinical pulmonary surfactant. Biomedical Journal, 2022, 45, 615-628.	1.4	16
14	Management of severe neonatal respiratory distress due to vertical transmission of severe acute respiratory syndrome coronavirus 2: a case report. Journal of Medical Case Reports, 2022, 16, 140.	0.4	3
15	Alveolar Type II Cells and Pulmonary Surfactant in COVID-19 Era. Physiological Research, 2021, 70, S195-S208.	0.4	22
16	Impact of Polymer Nanoparticles on DPPC Monolayer Properties. Colloids and Interfaces, 2022, 6, 28.	0.9	2
17	Pulmonary surfactant and COVID-19: A new synthesis. QRB Discovery, 2022, 3, .	0.6	3
18	Insights Gained Into the Treatment of COVID19 by Pulmonary Surfactant and Its Components. Frontiers in Immunology, 2022, 13, 842453.	2.2	4

#	Article	IF	CITATIONS
19	Severe COVID-19 ARDS Treated by Bronchoalveolar Lavage with Diluted Exogenous Pulmonary Surfactant as Salvage Therapy: In Pursuit of the Holy Grail?. Journal of Clinical Medicine, 2022, 11, 3577.	1.0	14
28	Menthol in electronic cigarettes causes biophysical inhibition of pulmonary surfactant. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 323, L165-L177.	1.3	7
29	Progressive membrane-binding mechanism of SARS-CoV-2 variant spike proteins. IScience, 2022, 25, 104722.	1.9	8
31	Recent Advances in the Design of Colorimetric Sensors Based on Gold Nanoparticles. Advances in Material Research and Technology, 2022, , 445-495.	0.3	1
32	Lung Surfactant Dilatational Rheology and Potential Effects on Lung Stability., 2022, , 1-38.		0
33	S2 Subunit of SARS-CoV-2 Spike Protein Induces Domain Fusion in Natural Pulmonary Surfactant Monolayers. Journal of Physical Chemistry Letters, 2022, 13, 8359-8364.	2.1	1
34	Paediatric critical COVID-19: clinical features and outcomes during five waves F1000Research, 0, 11, 1215.	0.8	0
35	Clouding development, interaction, and thermodynamics of triton X-100Â+Âsodium alginate mixture: Impacts of sodium salts and hydrotropic compositions. Journal of Molecular Liquids, 2022, 368, 120595.	2.3	8
36	Interfacial Dynamics of Adsorption Layers as Supports for Biomedical Research and Diagnostics. Colloids and Interfaces, 2022, 6, 81.	0.9	6
40	The Significance of Lipids for the Absorption and Release of Oxygen in Biological Organisms. Advances in Experimental Medicine and Biology, 2023, , 93-99.	0.8	0