ProThermDB: thermodynamic database for proteins an

Nucleic Acids Research 49, D420-D424 DOI: 10.1093/nar/gkaa1035

Citation Report

#	Article	IF	CITATIONS
1	ProNAB: database for binding affinities of protein–nucleic acid complexes and their mutants. Nucleic Acids Research, 2022, 50, D1528-D1534.	6.5	20
2	Revolutionizing enzyme engineering through artificial intelligence and machine learning. Emerging Topics in Life Sciences, 2021, 5, 113-125.	1.1	21
3	Assessing the performance of computational predictors for estimating protein stability changes upon missense mutations. Briefings in Bioinformatics, 2021, 22, .	3.2	30
5	Reviewing Challenges of Predicting Protein Melting Temperature Change Upon Mutation Through the Full Analysis of a Highly Detailed Dataset with High-Resolution Structures. Molecular Biotechnology, 2021, 63, 863-884.	1.3	13
6	Evolution-aided engineering of plant specialized metabolism. ABIOTECH, 2021, 2, 240-263.	1.8	11
8	The Stability Landscape of de novo TIM Barrels Explored by a Modular Design Approach. Journal of Molecular Biology, 2021, 433, 167153.	2.0	15
10	The 2021 <i>Nucleic Acids Research</i> database issue and the online molecular biology database collection. Nucleic Acids Research, 2021, 49, D1-D9.	6.5	100
11	Illustrative Tutorials for ProThermDB: Thermodynamic Database for Proteins and Mutants. Current Protocols, 2021, 1, e306.	1.3	0
12	Predicting protein stability changes upon single-point mutation: a thorough comparison of the available tools on a new dataset. Briefings in Bioinformatics, 2022, 23, .	3.2	57
13	Thermometer: a webserver to predict protein thermal stability. Bioinformatics, 2022, 38, 2060-2061.	1.8	9
14	Is Protein Folding a Thermodynamically Unfavorable, Active, Energy-Dependent Process?. International Journal of Molecular Sciences, 2022, 23, 521.	1.8	23
15	Artificial intelligence challenges for predicting the impact of mutations on protein stability. Current Opinion in Structural Biology, 2022, 72, 161-168.	2.6	45
16	Artificial intelligence based methods for hot spot prediction. Current Opinion in Structural Biology, 2022, 72, 209-218.	2.6	16
17	Data set and fitting dependencies when estimating protein mutant stability: Toward simple, balanced, and interpretable models. Journal of Computational Chemistry, 2022, 43, 504-518.	1.5	17
18	Computational design of a cutinase for plastic biodegradation by mining molecular dynamics simulations trajectories. Computational and Structural Biotechnology Journal, 2022, 20, 459-470.	1.9	27
20	Systematic evaluation of computational tools to predict the effects of mutations on protein stability in the absence of experimental structures. Briefings in Bioinformatics, 2022, 23, .	3.2	18
21	Systematic investigation of the link between enzyme catalysis and cold adaptation. ELife, 2022, 11, .	2.8	9
22	Structureâ€conditioned aminoâ€acid couplings: How contact geometry affects pairwise sequence preferences. Protein Science, 2022, 31, 900-917.	3.1	3

#	Article	IF	CITATIONS
23	Venus: Elucidating the Impact of Amino Acid Variants on Protein Function Beyond Structure Destabilisation. Journal of Molecular Biology, 2022, 434, 167567.	2.0	13
24	Large-scale design and refinement of stable proteins using sequence-only models. PLoS ONE, 2022, 17, e0265020.	1.1	17
25	Validating Small Molecule Chemical Probes for Biological Discovery. Annual Review of Biochemistry, 2022, 91, 61-87.	5.0	13
26	Turning Failures into Applications: The Problem of Protein ΔΔG Prediction. Methods in Molecular Biology, 2022, 2449, 169-185.	0.4	5
27	DDGun: an untrained predictor of protein stability changes upon amino acid variants. Nucleic Acids Research, 2022, 50, W222-W227.	6.5	28
29	Protein structural bioinformatics: An overview. Computers in Biology and Medicine, 2022, 147, 105695.	3.9	15
31	Spatial organization of hydrophobic and charged residues affects protein thermal stability and binding affinity. Scientific Reports, 2022, 12, .	1.6	21
32	How Functional Genomics Can Keep Pace With VUS Identification. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	8
34	Sequence grammar underlying the unfolding and phase separation of globular proteins. Molecular Cell, 2022, 82, 3193-3208.e8.	4.5	40
35	Active site center redesign increases protein stability preserving catalysis in thioredoxin. Protein Science, 2022, 31, .	3.1	2
36	Protein Design: From the Aspect of Water Solubility and Stability. Chemical Reviews, 2022, 122, 14085-14179.	23.0	54
37	PROST: AlphaFold2-aware Sequence-Based Predictor to Estimate Protein Stability Changes upon Missense Mutations. Journal of Chemical Information and Modeling, 2022, 62, 4270-4282.	2.5	25
38	Computational approaches for predicting variant impact: An overview from resources, principles to applications. Frontiers in Genetics, 0, 13, .	1.1	11
39	Protein Function Analysis through Machine Learning. Biomolecules, 2022, 12, 1246.	1.8	8
41	Molecular Information Theory Meets Protein Folding. Journal of Physical Chemistry B, 2022, 126, 8655-8668.	1.2	5
42	Data-driven enzyme engineering to identify function-enhancing enzymes. Protein Engineering, Design and Selection, 2023, 36, .	1.0	6
43	Computational protein design with dataâ€driven approaches: Recent developments and perspectives. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, .	6.2	4
44	Quantifying In Situ Structural Stabilities of Human Blood Plasma Proteins Using a Novel Iodination Protein Stability Assay. Journal of Proteome Research, 2022, 21, 2920-2935.	1.8	4

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
45	A structural biology community assessment of AlphaFold2 applications. Nature Structural and Molecular Biology, 2022, 29, 1056-1067.	3.6	261
46	Accurate protein stability predictions from homology models. Computational and Structural Biotechnology Journal, 2023, 21, 66-73.	1.9	12
47	Prediction of polyreactive and nonspecific single-chain fragment variables through structural biochemical features and protein language-based descriptors. BMC Bioinformatics, 2022, 23, .	1.2	3
50	BioMThermDB 1.0: Thermophysical Database of Proteins in Solutions. International Journal of Molecular Sciences, 2022, 23, 15371.	1.8	1
52	Beyond sequence: Structure-based machine learning. Computational and Structural Biotechnology Journal, 2023, 21, 630-643.	1.9	3
53	Predicting protein stability changes upon mutation using a simple orientational potential. Bioinformatics, 2023, 39, .	1.8	6
55	How a single mutation alters the protein structure: a simulation investigation on protein tyrosine phosphatase SHP2. RSC Advances, 2023, 13, 4263-4274.	1.7	2
57	Toward generalizable prediction of antibody thermostability using machine learning on sequence and structure features. MAbs, 2023, 15, .	2.6	6
58	Data-driven strategies for the computational design of enzyme thermal stability: trends, perspectives, and prospects. Acta Biochimica Et Biophysica Sinica, 2023, 55, 343-355.	0.9	3
59	Enzymes' Power for Plastics Degradation. Chemical Reviews, 2023, 123, 5612-5701.	23.0	80
60	Determining the Conformational Stability of a Protein from Urea and Thermal Unfolding Curves. Current Protocols, 2023, 3, .	1.3	0
61	Missense3D-PPI: A Web Resource to Predict the Impact of Missense Variants at Protein Interfaces Using 3D Structural Data. Journal of Molecular Biology, 2023, 435, 168060.	2.0	4
62	The role of data imbalance bias in the prediction of protein stability change upon mutation. PLoS ONE, 2023, 18, e0283727.	1.1	3
63	Molecules interact. But how strong and how much?. BioEssays, 2023, 45, .	1.2	4
64	Automated optimisation of solubility and conformational stability of antibodies and proteins. Nature Communications, 2023, 14, .	5.8	5
101	Machine learning for functional protein design. Nature Biotechnology, 2024, 42, 216-228.	9.4	1