A critical review on environmental impacts of renewable strategies: Wind, hydro, biomass and geothermal

Science of the Total Environment 766, 144505

DOI: 10.1016/j.scitotenv.2020.144505

Citation Report

#	Article	IF	Citations
1	Copper-Based Metal-Organic Frameworks (MOFs) for Electroreduction of CO2., 2022, , 544-554.		0
2	Applications of Nanofluids in Cooling of Electronic Components. , 2022, , 310-318.		6
3	Materials for a New Generation of Batteries. , 2021, , 59-59.		0
4	Progress in plant-based bioelectrochemical systems and their connection with sustainable development goals. Carbon Resources Conversion, 2021, 4, 169-183.	5.9	42
5	In-Situ Growth of MOF for Energy Conversion and Storage Devices. , 2021, , .		1
6	Metal-Organic Framework (MOF) in Fuel Cells. , 2021, , 306-306.		1
7	Electrochemical Reduction of CO2 on Cu-Based Heterogeneous Catalysts., 2022,, 807-815.		0
8	Characteristics of Electrochemical Energy Storage Materials in Light of Advanced Characterization Techniques. , 2021, , .		0
9	Metal Organic Frameworks (MOFs) for Supercapacitor. , 2021, , 414-414.		4
10	Progress of Metal Chalcogenides in Supercapacitors. , 2021, , 424-424.		6
11	Bio-Based Materials in Photocatalysis. , 2021, , .		1
12	Nanostructured Materials as Electrocatalysts for Electrochemical CO2 Reduction. , 2021, , .		O
13	Metal Organic Framework in Batteries. , 2021, , 125-125.		0
14	Bio-Based Carbon Materials for Capacitive Deionization CDI Desalination Processes., 2021, , .		3
15	Hydrogeochemical Characterization as a Tool to Recognize "Masked Geothermal Waters―in BahÃa Concepción, Mexico. Resources, 2021, 10, 23.	3.5	3
16	Simulation of Wind Speeds with Spatio-Temporal Correlation. Applied Sciences (Switzerland), 2021, 11, 3355.	2.5	4
17	Multicriteria Decision-Making to Determine the Optimal Energy Management Strategy of Hybrid PVâ€"Diesel Battery-Based Desalination System. Sustainability, 2021, 13, 4202.	3.2	10
18	Energy security through diversification of non-hydro renewable energy sources in developing countries. Energy and Environment, 2022, 33, 546-561.	4.6	13

#	ARTICLE	IF	CITATIONS
19	Intensification of heat exchanger performance utilizing nanofluids. International Journal of Thermofluids, 2021, 10, 100071.	7.8	53
20	Recent progress on Carbon-based nanomaterial for phase change materials: Prospects and challenges. Thermal Science and Engineering Progress, 2021, 23, 100920.	2.7	15
21	Dynamic Analysis of the Similarity of Objects in Research on the Use of Renewable Energy Resources in European Union Countries. Energies, 2021, 14, 3952.	3.1	7
22	Characterization and exposure assessment to urban air toxics across Middle Eastern and North African countries: a review. Environmental Monitoring and Assessment, 2021, 193, 529.	2.7	0
23	Enhancing the performance of direct urea fuel cells using Co dendrites. Applied Surface Science, 2021, 555, 149698.	6.1	22
24	State-of-the-Art Technologies for Building-Integrated Photovoltaic Systems. Buildings, 2021, 11, 383.	3.1	39
25	Effects of COVID-19 on the environment: An overview on air, water, wastewater, and solid waste. Journal of Environmental Management, 2021, 292, 112694.	7.8	69
26	A Review on Failure Modes of Wind Turbine Components. Energies, 2021, 14, 5241.	3.1	36
27	High energy storage quasi-solid-state supercapacitor enabled by metal chalcogenide nanowires and iron-based nitrogen-doped graphene nanostructures. Journal of Colloid and Interface Science, 2022, 608, 711-719.	9.4	31
28	Optimal selection and management of hybrid renewable energy System: Neom city as a case study. Energy Conversion and Management, 2021, 244, 114434.	9.2	102
29	Sugar Industry Waste for Bioelectricity Generation. Environmental Research, Engineering and Management, 2021, 77, 15-22.	1.0	10
30	Greenhouse Gas Savings Potential under Repowering of Onshore Wind Turbines and Climate Change: A Case Study from Germany. Wind, 2021, 1, 1-19.	1.5	3
31	LCA driven solar compensation mechanism for Renewable Energy Communities: the Italian case. Energy, 2021, 235, 121374.	8.8	13
32	Optimal operating parameter determination based on fuzzy logic modeling and marine predators algorithm approaches to improve the methane production via biomass gasification. Energy, 2022, 239, 122072.	8.8	29
33	Rational design of biogenic PdxAuy nanoparticles with enhanced catalytic performance for electrocatalysis and azo dyes degradation. Environmental Research, 2022, 204, 112086.	7. 5	11
34	Progress in the Use of Metal Chalcogenides for Batteries. , 2021, , .		1
35	Progress of Biomaterials Applications in Supercapacitors. , 2021, , .		0
36	Technical and Commercial Challenges of Proton-Exchange Membrane (PEM) Fuel Cells. Energies, 2021, 14, 144.	3.1	71

3

#	ARTICLE	IF	CITATIONS
37	Analysis and optimization for multi-stack vanadium flow battery module incorporating electrode permeability. Journal of Power Sources, 2021, 515, 230606.	7.8	10
38	Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators. Renewable and Sustainable Energy Reviews, 2022, 153, 111710.	16.4	207
39	A review of the status of organic pollutants in geothermal waters. Journal of Nature, Science & Technology, 2021, 1, 19-28.	0.4	0
40	Multi-objective cuckoo search algorithm for optimized pathways for 75 % renewable electricity mix by 2050 in Algeria. Renewable Energy, 2022, 185, 1410-1424.	8.9	16
41	Energy transition or transformation? Power and politics in the European natural gas industry's trasformismo. Energy Research and Social Science, 2022, 84, 102391.	6.4	20
42	Assessing Hybrid Solar-Wind Potential for Industrial Decarbonization Strategies: Global Shift to Green Development. Energies, 2021, 14, 7620.	3.1	43
43	Tuning the Nanoparticle Interfacial Properties and Stability of the Coreâ€"Shell Structure in Zn-Doped NiMoO ₄ @AWO ₄ . ACS Applied Materials & District Structure in Zn-Doped NiMoO ₄ . ACS Applied Materials & District Structure in Zn-Doped NiMoO ₄ . ACS Applied Materials & District Structure in Zn-Doped NiMoO ₄ . ACS Applied Materials & District Structure in Zn-Doped NiMoO ₄ . ACS Applied Materials & District Structure in Zn-Doped NiMoO ₄ . ACS Applied Materials & District Structure in Zn-Doped NiMoO ₄ . ACS Applied Materials & District Structure in Zn-Doped NiMoO ₄ . ACS Applied Materials & District Structure in Zn-Doped NiMoO ₄ . ACS Applied Materials & District Structure in Zn-Doped NiMoO ₄ . ACS Applied Materials & District Structure in Zn-Doped NiMoO ₄ . ACS Applied Materials & District Structure in Zn-Doped NiMoO ₄ . ACS Applied Materials & District Structure in Zn-Doped NiMoO ₄ . ACS Applied Materials & District Structure in Zn-Doped NiMoO ₄ . ACS Applied NiM	8.0	30
44	Utilization of solar and wind energy to improve the quality of life for rural communities in Blora Regency – Indonesia: from triple helix to quadruple helix. IOP Conference Series: Earth and Environmental Science, 2021, 916, 012036.	0.3	1
45	Disaggregating the environmental effects of renewable and non-renewable energy consumption in South Africa: fresh evidence from the novel dynamic ARDL simulations approach. Economic Change and Restructuring, 2022, 55, 1767-1814.	5.0	56
46	Hydro-environmental response to the inter-basin water resource development in the middle and lower Han River, China. Hydrology Research, 2022, 53, 141-155.	2.7	10
47	Management of potential challenges of PV technology proliferation. Sustainable Energy Technologies and Assessments, 2022, 51, 101942.	2.7	25
48	Methodology of the Renewable Energy Sources Life Cycle Environmental Assessment. , 2021, , .		1
49	Experimental Study to Replicate Wood Fuel Conversion in a Downdraft Gasifier: Features and Mechanism of Single Particle Combustion in an Inert Channel. Applied Sciences (Switzerland), 2022, 12, 1179.	2.5	4
50	Analysis of Hybrid Solar Wind Energy System with Multilevel Inverter Control at the Load End. Smart Moves Journal Ijoscience, 0 , 1 -8.	0.0	0
51	Heat Transfer Enhancement in Parabolic through Solar Receiver: A Three-Dimensional Numerical Investigation. Nanomaterials, 2022, 12, 419.	4.1	23
52	Net zero electricity systems in global economies by life cycle assessment (LCA) considering ecosystem, health, monetization, and soil CO2 sequestration impacts. Renewable Energy, 2022, 184, 960-974.	8.9	25
53	Biogas role in achievement of the sustainable development goals: Evaluation, Challenges, and Guidelines. Journal of the Taiwan Institute of Chemical Engineers, 2022, 131, 104207.	5.3	107
54	Electric vehicle impact on energy industry, policy, technical barriers, and power systems. International Journal of Thermofluids, 2022, 13, 100134.	7.8	48

#	Article	IF	CITATIONS
55	Impact of COVIDâ€19 on the Renewable Energy Sector and Mitigation Strategies. Chemical Engineering and Technology, 2022, 45, 558-571.	1.5	33
56	Development of Sustainable Energy Use with Attention to Fruitful Policy. Sustainability, 2021, 13, 13840.	3.2	6
57	The main utilization forms and current developmental status of geothermal energy for building cooling/heating in developing countries., 2022,, 159-190.		1
58	Renewable Energy Systems - Carbon Removal and Light Component Diversity. , 2022, , .		0
59	Analysis of Regulatory Possibilities and Obstacles to Expand Renewable Energy and Preserve Landscape Quality in the Silesian Voivodship. Resources, 2022, 11, 23.	3.5	2
60	Parameter Estimation-Based Slime Mold Algorithm of Photocatalytic Methane Reforming Process for Hydrogen Production. Sustainability, 2022, 14, 2970.	3.2	1
61	Strategy improvements to minimize the drawbacks of geothermal investments by using spherical fuzzy modelling. International Journal of Energy Research, 2022, 46, 10796-10807.	4.5	31
62	Solar Radiation Forecasting by Pearson Correlation Using LSTM Neural Network and ANFIS Method: Application in the West-Central Jordan. Future Internet, 2022, 14, 79.	3.8	19
63	Investigation on the phenomena and influence factors of urban ground collapse in China. Natural Hazards, 2022, 113, 1-33.	3.4	13
64	Optimal heuristic economic management strategy for microgrids based PEM fuel cells. International Journal of Hydrogen Energy, 2024, 52, 775-784.	7.1	12
65	A Review on the Critical Role of H ₂ Donor in the Selective Hydrogenation of 5â€Hydroxymethylfurfural. ChemSusChem, 2022, 15, .	6.8	12
66	Does renewable energy reduce ecological footprint at the expense of economic growth? An empirical analysis of 120 countries. Journal of Cleaner Production, 2022, 346, 131207.	9.3	163
67	Optimal Sizing Grid-Connected Hybrid PV/Generator/Battery Systems Following the Prediction of CO2 Emission and Electricity Consumption by Machine Learning Methods (MLP and SVR): Aseer, Tabuk, and Eastern Region, Saudi Arabia. Frontiers in Energy Research, 2022, 10, .	2.3	5
68	Environmental Aspects of the Combined Cooling, Heating, and Power (CCHP) Systems: A Review. Processes, 2022, 10, 711.	2.8	6
69	Selective Hydrogenation of 5â€Hydroxymethylfurfural to 1â€Hydroxyâ€2,5â€hexanedione by Biocharâ€Supporte Ru Catalysts. ChemSusChem, 2022, 15, .	d _{6.8}	7
70	Optimal adaptive fuzzy management strategy for fuel cell-based DC microgrid. Energy, 2022, 247, 123447.	8.8	23
71	Optimal location of hydraulic energy storage using geographic information systems and multi-criteria analysis. Journal of Energy Storage, 2022, 49, 104159.	8.1	1
72	Supercapacitors as next generation energy storage devices: Properties and applications. Energy, 2022, 248, 123617.	8.8	244

#	Article	IF	Citations
73	Effect of dust and methods of cleaning on the performance of solar PV module for different climate regions: Comprehensive review. Science of the Total Environment, 2022, 827, 154050.	8.0	81
74	A Bayesian approach for fatigue damage diagnosis and prognosis of wind turbine blades. Mechanical Systems and Signal Processing, 2022, 174, 109067.	8.0	18
75	Multi-criteria decision making for different concentrated solar thermal power technologies. Sustainable Energy Technologies and Assessments, 2022, 52, 102118.	2.7	21
76	Renewable energy sources from the perspective of blockchain integration: From theory to application. Sustainable Energy Technologies and Assessments, 2022, 52, 102108.	2.7	29
77	Highly stable heterogeneous catalysts from electric furnace dust for biodiesel production: Optimization, performance and reaction kinetics. Catalysis Today, 2022, 404, 78-92.	4.4	6
78	Output voltage control of double chambers microbial fuel cell using intelligence-based optimized adaptive neuro fuzzy inference controller. International Journal of Hydrogen Energy, 2022, 47, 19837-19849.	7.1	4
79	Technologies integration towards bio-fuels production: A state-of-the-art review. Applications in Energy and Combustion Science, 2022, 10, 100070.	1.5	3
80	A comparative study of thermal and combustion kinetics for raw and bio-chars of eucalyptus wood and bark. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2022, 44, 3313-3329.	2.3	1
81	Fuzzy modelling and metaheuristic to minimize the temperature of lithium-ion battery for the application in electric vehicles. Journal of Energy Storage, 2022, 50, 104552.	8.1	8
82	CdSe supported SnO2 nanocomposite with strongly hydrophilic surface for enhanced overall water splitting. Fuel, 2022, 321, 124086.	6.4	47
83	Robust parameter estimation approach of Lithiumâ€ion batteries employing bald eagle search algorithm. International Journal of Energy Research, 2022, 46, 10564-10575.	4.5	15
84	Battery energy storage systems and SWOT (strengths, weakness, opportunities, and threats) analysis of batteries in power transmission. Energy, 2022, 254, 123987.	8.8	74
85	Towards a sustainable energy future for Egypt: A systematic review of renewable energy sources, technologies, challenges, and recommendations. Cleaner Engineering and Technology, 2022, 8, 100497.	4.0	28
86	Research on the preparations and properties of fertilizer recycling from biomass ash, slags, and waste acid liquid from desulfurization and denitrification process of flue gas. Biomass Conversion and Biorefinery, 2024, 14, 3235-3247.	4.6	0
87	Evaluating the effect of torrefaction on the pyrolysis of biomass and the biochar catalytic performance on dry reforming of methane. Renewable Energy, 2022, 192, 313-325.	8.9	9
88	Geopolymer concrete as green building materials: Recent applications, sustainable development and circular economy potentials. Science of the Total Environment, 2022, 836, 155577.	8.0	96
90	Strategies toward the end-group modifications of indacenodithiophene based non-fullerene small molecule acceptor to improve the efficiency of organic solar cells; a DFT study. Computational and Theoretical Chemistry, 2022, 1213, 113747.	2.5	9
91	Biomass: The driver for sustainable development. , 2022, , 1-23.		2

#	Article	IF	CITATIONS
92	Research on Multi-Mode Operation and Coordinated Control Strategy of Grid-Connected Photovoltaic/Biogas/Energy-Storage System for Rural Ecological Breeding. Frontiers in Energy Research, 0, 10, .	2.3	0
93	Steam Reforming of Bioethanol Using Metallic Catalysts on Zeolitic Supports: An Overview. Catalysts, 2022, 12, 617.	3.5	9
94	Large scale application of carbon capture to process industries – A review. Journal of Cleaner Production, 2022, 362, 132300.	9.3	84
95	Cellular scaffolds based on multiwalled carbon nanotubes interpenetrating conductive metal-organic frameworks as efficient eelectrocatalysts in microbial fuel cells. Journal of Power Sources, 2022, 541, 231685.	7.8	7
96	Battery thermal management systems: Recent progress and challenges. International Journal of Thermofluids, 2022, 15, 100171.	7.8	78
97	Why Are Households Willing to Pay for Renewable Energy? Lessons From Romania. Frontiers in Environmental Science, 0, 10, .	3.3	7
98	Coalition-oriented strategic selection of renewable energy system alternatives using q-ROF DEMATEL with golden cut. Energy, 2022, 256, 124606.	8.8	53
99	Artificial photosynthesis systems for solar energy conversion and storage: platforms and their realities. Chemical Society Reviews, 2022, 51, 6704-6737.	38.1	52
100	Environmental, social, and economic impacts of renewable energy sources., 2022,, 57-85.		0
101	Co and Ni Double Substituted Zn-Fe Layered Double Hydroxide as 2D Nano-Adsorbent for Wastewater Treatment. Key Engineering Materials, 0, 922, 193-213.	0.4	6
102	In-situ synthesis of porous ZnO nanosphere/reduced graphene oxide (ZnO@rGO) composite for structural, optical and electrochemical properties. Materials Today: Proceedings, 2022, 66, 3253-3260.	1.8	1
103	Research on the Most Efficient Use of Wind Energy Resources in the Context of Carbon Neutrality: Overview Based on Evolutionary Algorithm. Mathematical Problems in Engineering, 2022, 2022, 1-12.	1.1	0
104	Understanding the complexity of existing fossil fuel power plant decarbonization. IScience, 2022, 25, 104758.	4.1	6
105	Transitioning to carbon neutrality in Bahrain: a policy brief. Arab Gulf Journal of Scientific Research, 2022, 40, 25-33.	0.6	7
106	Comprehensive Carbon Emission and Economic Analysis on Nearly Zero-Energy Buildings in Different Regions of China. Sustainability, 2022, 14, 9834.	3.2	2
107	Review of the Typical Damage and Damage-Detection Methods of Large Wind Turbine Blades. Energies, 2022, 15, 5672.	3.1	29
108	Application of soft computing in maximization of amoxicillin degradation from contaminated water using solar energy. International Journal of Energy Research, 2022, 46, 18689-18696.	4.5	2
109	Recent progresses and perspectives of VN-based materials in the application of electrochemical energy storage. Journal of Industrial and Engineering Chemistry, 2022, 114, 52-76.	5.8	5

#	Article	IF	CITATIONS
110	Enhancing energy efficiency and long-term durability of vanadium redox flow battery with catalytically graphitized carbon fiber felts as electrodes by boron doping. Electrochimica Acta, 2022, 429, 141033.	5.2	8
111	Proposal of biomass/geothermal hybrid driven poly-generation plant centering cooling, heating, power, and hydrogen production with CO2 capturing: Design and 3E evaluation. Fuel, 2022, 330, 125593.	6.4	16
112	Economic analysis of stand-alone PV-battery system based on new power assessment configuration in Siwa Oasis $\hat{a} \in \text{``Egypt. AEJ - Alexandria Engineering Journal, 2023, 62, 181-191.}$	6.4	7
113	Numerical simulation of heat pipes in different applications. International Journal of Thermofluids, 2022, 16, 100199.	7.8	20
114	Recent progress towards photovoltaics' circular economy. Journal of Cleaner Production, 2022, 373, 133864.	9.3	17
115	Recent progress in renewable energy based-desalination in the Middle East and North Africa MENA region. Journal of Advanced Research, 2023, 48, 125-156.	9.5	18
116	A Scientometric Analysis of Energy Management in the Past Five Years (2018–2022). Sustainability, 2022, 14, 11358.	3.2	2
117	Nanoparticles of Mixed-Valence Oxides MnXCO3-XO4 (0 â‰攻 â‰丸) Obtained with Agar-Agar from Red Algae (Rhodophyta) for Oxygen Evolution Reaction. Nanomaterials, 2022, 12, 3170.	4.1	3
118	Pressure fluctuation characteristics of a pump turbine in a draft tube: New insight into water column separation. Physics of Fluids, 2022, 34, .	4.0	11
119	Greener reactants, renewable energies and environmental impact mitigation strategies in pyrometallurgical processes: A review. MRS Energy & Sustainability, 2022, 9, 212-247.	3.0	9
120	Environmental and human health impacts of geothermal exploitation in China and mitigation strategies. Critical Reviews in Environmental Science and Technology, 2023, 53, 1173-1196.	12.8	6
121	Identifying and Explaining Public Preferences for Renewable Energy Sources in Qatar. Sustainability, 2022, 14, 13835.	3.2	1
122	Plastics and Microplastic in the Cosmetic Industry: Aggregating Sustainable Actions Aimed at Alignment and Interaction with UN Sustainable Development Goals. Polymers, 2022, 14, 4576.	4.5	9
123	Sản xuất khÃ-sinh hỀ từ các nguồn chất thải khác nhau ở Äồng bằng sông Cá»u Long. Ta Science, 2022, 58, 239-251.	p Chi Khoa	a Hoc = Journ
124	Multi-criteria evaluation of the effectiveness of energy policy in Central and Eastern European countries in a long-term perspective. Energy Strategy Reviews, 2022, 44, 100973.	7.3	18
125	Optimization of the thickness of catalytic layer for HT-PEMFCs based on genetic algorithm. Energy Reports, 2022, 8, 12905-12915.	5.1	6
126	Exploring the sustainable siting of floating wind farms in the Cretan coastline. Sustainable Energy Technologies and Assessments, 2022, 54, 102841.	2.7	0
127	Life cycle assessment of renewable liquid hydrocarbons, propylene, and polypropylene derived from bio-based waste and residues: Evaluation of climate change impacts and abiotic resource depletion potential. Journal of Cleaner Production, 2022, 379, 134645.	9.3	3

#	Article	IF	CITATIONS
128	Overview of Green Energy as a Real Strategic Option for Sustainable Development. Energies, 2022, 15, 8573.	3.1	20
129	A Comprehensive Review of Composite Phase Change Materials (cPCMs) for Thermal Management Applications, Including Manufacturing Processes, Performance, and Applications. Energies, 2022, 15, 8271.	3.1	9
130	Comprehensive assessment of heat pump dryers for drying agricultural products. Energy Science and Engineering, 2023, 11, 2985-3014.	4.0	5
131	Prospect of Post-Combustion Carbon Capture Technology and Its Impact on the Circular Economy. Energies, 2022, 15, 8639.	3.1	7
132	Artificial neural networks applications in partially shaded PV systems. Thermal Science and Engineering Progress, 2023, 37, 101612.	2.7	21
133	A review and mapping exercise of energy community regulatory challenges in European member states based on a survey of collective energy actors. Renewable and Sustainable Energy Reviews, 2023, 172, 113055.	16.4	24
134	Solar energy: A promising renewable source for meeting energy demand in Indian agriculture applications. Sustainable Energy Technologies and Assessments, 2023, 55, 102905.	2.7	32
135	A comprehensive review on combustion, performance and emission aspects of higher alcohols and its additive effect on the diesel engine. Fuel, 2023, 335, 127011.	6.4	15
136	2D Molybdenum Compounds for Electrocatalytic Energy Conversion. Advanced Functional Materials, 2023, 33, .	14.9	12
137	The Application of a Multi-Criteria Decision-Making for Indication of Directions of the Development of Renewable Energy Sources in the Context of Energy Policy. Energies, 2022, 15, 9629.	3.1	6
138	Energy transition research: A bibliometric mapping of current findings and direction for future research. Cleaner Production Letters, 2022, 3, 100026.	2.9	19
139	Triboelectric nanogenerators for smart agriculture. InformaÄnÃ-Materiály, 2023, 5, .	17.3	12
140	Renewable Energy Resources Technologies and Life Cycle Assessment: Review. Energies, 2022, 15, 9417.	3.1	9
141	The important contribution of renewable energy technologies in overcoming Pakistan's energy crisis: Present challenges and potential opportunities. Energy and Environment, 2023, 34, 3450-3494.	4.6	4
142	Optimization and Determination of Kinetic Parameters of the Synthesis of 5-Lauryl-hydroxymethylfurfural Catalyzed by Lipases. Catalysts, 2023, 13, 19.	3.5	3
143	The effect of water content on lignin solubilization in deep eutectic solvents. Journal of Molecular Liquids, 2023, 374, 121271.	4.9	10
144	Temporal Resolution of Input Weather Data Strongly Affects an Off-Grid PV System Layout and Reliability. Solar, 2023, 3, 49-61.	1.8	6
145	Numerical study of perforated obstacles effects on the performance of solar parabolic trough collector. Frontiers in Chemistry, 0, 10 , .	3.6	4

#	ARTICLE	IF	CITATIONS
146	On-Farm Renewable Energy Systems: A Systematic Review. Energies, 2023, 16, 862.	3.1	5
148	Modeling photovoltaics' waste projection and waste management optimization. Journal of Cleaner Production, 2023, 388, 135947.	9.3	5
149	Recent progress in Green Ammonia: Production, applications, assessment; barriers, and its role in achieving the sustainable development goals. Energy Conversion and Management, 2023, 277, 116594.	9.2	51
150	Integration of electric vehicles in smart grids: A review of the advantages and challenges of vehicle-to-grid technology. , 2022, , .		O
151	The Significance of Governance Indicators to Achieve Carbon Neutrality: A New Insight of Life Expectancy. Sustainability, 2023, 15, 766.	3.2	7
152	Fuzzy Modelling and Optimization of Yeast-MFC for Simultaneous Wastewater Treatment and Electrical Energy Production. Sustainability, 2023, 15, 1878.	3.2	5
153	Business models for smart local energy systems—A triple layered perspective. , 0, 1, .		2
154	Renewable Energy Forecasting Based on Stacking Ensemble Model and Al-Biruni Earth Radius Optimization Algorithm. Energies, 2023, 16, 1370.	3.1	1
155	Wind turbine concepts for domestic wind power generation at low wind quality sites. Journal of Cleaner Production, 2023, 394, 136137.	9.3	31
156	A bibliometric analysis on renewable energy's public health benefits. Journal of Energy Systems, 2023, 7, 132-157.	1.5	4
157	Accounting impacts of renewable energy expansions on ecosystem services to balance the trade-offs. Science of the Total Environment, 2023, 879, 162990.	8.0	3
158	Integrated Hydroponics-Microbial Electrochemical Technology (iHydroMET) is promising for Olericulture along with domestic wastewater management. Bioresource Technology Reports, 2023, 22, 101428.	2.7	2
159	Green and Sustainable Technology for Clean Energy Production: Applications. , 2022, , 1-23.		1
161	Thermal efficiency improvement of parabolic trough solar collector using different kinds of hybrid nanofluids. Case Studies in Thermal Engineering, 2023, 42, 102759.	5.7	16
162	Membrane-based carbon capture: Recent progress, challenges, and their role in achieving the sustainable development goals. Chemosphere, 2023, 320, 137996.	8.2	21
163	The sustainability of green hydrogen: An uncertain proposition. International Journal of Hydrogen Energy, 2023, 48, 19422-19436.	7.1	8
164	Wind Energy Contribution to the Sustainable Development Goals: Case Study on London Array. Sustainability, 2023, 15, 4641.	3.2	25
165	Marine predators optimization and ANFIS as an effective tools for maximization of specific capacity of G-NiO electrode for electrochemical energy storage. Ain Shams Engineering Journal, 2023, 14, 102210.	6.1	1

#	Article	IF	CITATIONS
166	Rigorous simulation of geothermal power plants to evaluate environmental performance of alternative configurations. Renewable Energy, 2023, 207, 471-483.	8.9	6
167	Flow distribution analysis of a novel fcc system through experiment study and atomic model. EUREKA, Physics and Engineering, 2023, , 52-67.	0.8	1
168	Social, environmental, and economic consequences of integrating renewable energies in the electricity sector: a review. Environmental Chemistry Letters, 2023, 21, 1381-1418.	16.2	23
170	Optimal Design and Simulation of a Rooftop Photovolataic System in Faculty of Engineering Guilan University. , 2023, , .		0
171	Configuring an Off-Grid Hybrid Renewable Energy System in the Arctic Zone., 2023,,.		2
172	Promising Features of Wind Energy: A Glance Overview., 2023,,.		6
174	Case studies and analysis of wind energy systems. , 2023, , 363-387.		0
175	Green and Sustainable Technology for Clean Energy Production: Applications. , 2023, , 563-585.		0
176	Flow enzymatic esterification of 5-hydroxymethylfurfural and liquid–liquid extraction of 5-acetyl-hydroxymethylfurfural using deep eutectic solvents in semicontinuous mode. Process Biochemistry, 2023, 130, 409-418.	3.7	4
177	Application and SWOT analysis of hydro energy. , 2023, , 451-470.		0
178	Introduction and definition of wind energy. , 2023, , 299-314.		0
179	Developments of wind energy systems. , 2023, , 315-329.		0
180	Case studies and analysis of solar photovoltaics. , 2023, , 237-279.		0
181	Case studies and analysis of hydro energy systems. , 2023, , 499-517.		0
182	A review on hydro energy., 2023,, 471-497.		0
183	Development of hydropower technology. , 2023, , 427-450.		0
184	Environmental challenges of green energies and technologies. , 2023, , .		0
185	Applications of wind energy. , 2023, , 331-345.		2

#	Article	IF	CITATIONS
186	Developments of solar photovoltaics. , 2023, , 175-195.		1
187	Biomass volatiles reforming by integrated pyrolysis and plasma-catalysis system for H2 production: Understanding roles of temperature and catalyst. Energy Conversion and Management, 2023, 288, 117159.	9.2	6
188	Effect on physiochemical assets of Dy added spinel ZnSm2O4 for energy storage applications. Ceramics International, 2023, 49, 28036-28047.	4.8	12
190	Experimental investigation on the influence on mechanical properties and acoustic emission characteristics of granite after heating and water-cooling cycles. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2023, 9, .	2.9	2
191	Waterbodies thermal energy based systems interactions with marine environment — A review. Energy Reports, 2023, 9, 5269-5286.	5.1	2
192	A Chaotic Local Search-Based Particle Swarm Optimizer for Large-Scale Complex Wind Farm Layout Optimization. IEEE/CAA Journal of Automatica Sinica, 2023, 10, 1168-1180.	13.1	8
193	Electro-driven carbon foam/PCMs nanocomposites for sustainable energy management. Journal of Energy Storage, 2023, 67, 107599.	8.1	3
194	Industrial revolution and environmental sustainability: an analytical interpretation of research constituents in Industry 4.0. International Journal of Lean Six Sigma, 2024, 15, 22-49.	3.3	12
195	Challenges and Opportunities for the Energy Sector in the Face of Threats Such as Climate Change and the COVID-19 Pandemicâ€"An International Perspective. Energies, 2023, 16, 4454.	3.1	2
196	Activated carbon from sugarcane as an efficient adsorbent for phenol from petroleum refinery wastewater: Equilibrium, kinetic, and thermodynamic study. Open Engineering, 2023, 13, .	1.6	1
197	Elemental dissolution characteristics of granite and gabbro under high-temperature water-rock interactions. Science of the Total Environment, 2023, 897, 165455.	8.0	3
198	Environmental sustainability by a comprehensive environmental and energy comparison analysis in a wood chip and rice straw biomass-fueled multi-generation energy system. Chemical Engineering Research and Design, 2023, 177, 868-879.	5.6	3
199	Nanotechnology in Renewable Energy Conversion and Storage Process., 2023,, 245-266.		1
200	Study on the possibilities of using wind energy in the northern areas of the Bukhara Region. AIP Conference Proceedings, 2023, , .	0.4	2
201	Selection of environmental criteria for multi-criteria evaluation of energy supply alternatives in Non-Interconnected Zones of Colombia. , 2023, , .		0
202	Visual Impact of Renewable Energy Infrastructure: Implications for Deployment and Public Perception. Processes, 2023, 11, 2252.	2.8	4
203	One-pot cogeneration of phenol-rich bio-oil, hydrogen-rich gas and solid carbon degradation material from reed. Fuel Processing Technology, 2023, 250, 107912.	7.2	1
205	Impact of technological innovation and renewable energy on ecological footprint in G20 countries: The moderating role of institutional quality. Environmental Science and Pollution Research, 2023, 30, 95376-95393.	5. 3	6

#	Article	IF	CITATIONS
206	Grain boundaries derived from layered Fe/Co di-hydroxide porous prickly-like nanosheets as potential electrocatalyst for efficient electrooxidation of hydrazine. Applied Surface Science, 2023, 639, 158265.	6.1	O
207	Green Hydrogen Production and Its Land Tenure Consequences in Africa: An Interpretive Review. Land, 2023, 12, 1709.	2.9	0
208	Pyrolysis and Combustion Behavior of Flax Straw as Biomass: Evaluation of Kinetic, Thermodynamic Parameters, and Qualitative Analysis of Degradation Products. Energies, 2023, 16, 6932.	3.1	0
209	Corn straw supported high-performance phase change composites: Strategy to turn agricultural residues into high efficient and stable thermal energy storage materials. Materials Today Sustainability, 2023, 24, 100571.	4.1	1
210	Renewable Energy Integration for Sustainable Economic Growth: Insights and Challenges via Bibliometric Analysis. Sustainability, 2023, 15, 15030.	3.2	2
211	Group contribution method for predicting viscosity of alkyl esters and biodiesel. Fuel, 2024, 357, 129666.	6.4	2
212	Molecular engineering of inorganic halide perovskites and <scp>HTMs</scp> for photovoltaic applications. International Journal of Quantum Chemistry, 2024, 124, .	2.0	0
213	Performance analysis of a multi-source renewable energy system for temperature control in buildings of varied thermal transmittance and climate zone. Renewable and Sustainable Energy Reviews, 2023, 187, 113725.	16.4	2
214	Economic, Environmental, and Social Impacts of Renewable Energies: What have We Learned by Now?. E3S Web of Conferences, 2023, 433, 03002.	0.5	0
215	Definition of bioenergy. , 2024, , 215-243.		0
216	Life cycle assessment of renewable energy technologies. , 2024, , 37-79.		0
217	Successive performance enhancement on a Ge-Ti codoped \hat{l}_{\pm} -Fe2O3 with AlOOH modification photoanode for photoelectrochemical water splitting. Chemical Engineering Journal, 2023, 476, 146779.	12.7	1
218	Blend of flue gas from a methane-fueled gas turbine power plant and syngas from biomass gasification process to feed a novel trigeneration application: Thermodynamic-economic study and optimization. Energy, 2023, 285, 129425.	8.8	4
219	Interfacial Reconstruction Toward Reversible Mg Anode in Conventional Electrolytes. ACS Applied Materials & Samp; Interfaces, 2023, 15, 51126-51134.	8.0	0
220	Designing synergies between hybrid renewable energy systems and ecosystems developed by different afforestation approaches. Journal of Cleaner Production, 2024, 434, 139804.	9.3	0
221	Optimal investment decision for photovoltaic projects in China: a real options method. Journal of Combinatorial Optimization, 2023, 46, .	1.3	0
222	Promoting sustainable development: Evaluating the influence of natural resources, high-tech export and corruption on CO2 emissions in developing economies. Resources Policy, 2024, 88, 104511.	9.6	3
223	An analytical link of disaggregated green energy sources in achieving carbon neutrality in China: A policy based novel wavelet local multiple correlation analysis. Progress in Nuclear Energy, 2024, 167, 104986.	2.9	6

#	Article	IF	CITATIONS
224	Bioethanol to jet fuel: Current status, challenges, and perspectives. Renewable and Sustainable Energy Reviews, 2024, 192, 114240.	16.4	0
225	Green hydrogen production by intermediateâ€temperature protonic solid oxide electrolysis cells: Advances, challenges, and perspectives. InformaÄnÃ-Materiály, 0, , .	17.3	3
226	The impact of wind energy on plant biomass production in China. Scientific Reports, 2023, 13, .	3.3	0
227	Production and utilization of green ammonia for decarbonizing the energy sector with a discrete focus on Sustainable Development Goals and environmental impact and technical hurdles. Fuel, 2024, 360, 130626.	6.4	2
228	An integrated approach for cost-and emission optimal planning of coastal microgrid with demand-side management. Sustainable Cities and Society, 2024, 101, 105149.	10.4	0
229	Technological aspects, utilization and impact on power system for distributed generation: A comprehensive survey. Renewable and Sustainable Energy Reviews, 2024, 192, 114257.	16.4	1
230	A review on environmental impacts of renewable energy for sustainable development. International Journal of Environmental Science and Technology, 2024, 21, 5285-5310.	3.5	0
231	A case study on the environmental and economic impact of photovoltaic systems in wastewater treatment plants. Open Physics, 2023, 21, .	1.7	0
232	A global analysis of renewable energy project commissioning timelines. Applied Energy, 2024, 358, 122563.	10.1	0
233	Impact of belt and road initiative policy and interacting effect of renewable energy toward carbon neutrality. Environmental Science and Pollution Research, 2024, 31, 948-965.	5.3	0
234	Renewable electricity generation and carbon emissions in leading European countries: Daily-based disaggregate evidence by nonlinear approaches. Energy Strategy Reviews, 2024, 51, 101300.	7.3	1
235	A Critical Analysis on Transformation of Renewable Energy to Green Chemicals: Opportunities and Challenges. ChemBioEng Reviews, 2024, 11, 363-385.	4.4	0
236	Renewable energy: Wind energy. , 2024, , 513-557.		0
237	Kinetic and Thermodynamic Characteristics of Torrefied <i>Acer palmatum</i> . ACS Omega, 2024, 9, 4474-4485.	3.5	0
238	Renewable energies in the twenty-first century: A global-view., 2023,,.		0
239	Digitization Meets Energy Transition: Shaping the Future of Environmental Sustainability. Energies, 2024, 17, 767.	3.1	0
240	Co-benefits of transport demand reductions from compact urban development in Chinese cities. Nature Sustainability, 2024, 7, 294-304.	23.7	0
241	Data-driven approaches for predicting performance degradation of solid oxide fuel cells system considering prolonged operation and shutdown accumulation effect. Journal of Power Sources, 2024, 598, 234186.	7.8	0

#	Article	IF	CITATIONS
242	Review of NORM occurrence and application of a tailored graded approach for the radiation protection in geothermal plants. European Physical Journal Plus, 2024, 139, .	2.6	0
243	Driving Decarbonization Opportunities with Social Acceptance in the Renewable Sector: The "Kosher Electricity―as the Case Study. ACS Sustainable Chemistry and Engineering, 2024, 12, 4356-4364.	6.7	O
244	A new semi-analytical model for studying the performance of deep U-shaped borehole heat exchangers. Renewable Energy, 2024, 225, 120275.	8.9	0
245	Greening the grid: A comprehensive review of renewable energy in Bangladesh. Heliyon, 2024, 10, e27477.	3.2	0
246	Linking natural resource abundance and green growth: The role of energy transition. Resources Policy, 2024, 91, 104898.	9.6	0
247	Evaluation of Energy Complementarity Between Wind, Solar and Water Resources in the Municipality of Lages (Santa Catarina, Brazil). RGSA: Revista De Gestão Social E Ambiental, 2024, 18, e05462.	3.8	0
249	Components of Wind Turbines: (Rotors, Blades, Drive Trains, Gearboxes, Generators, etc.)., 2024, , .		0
250	Simultaneous production of biofuel, and removal of heavy metals using marine alga Turbinaria turbinata as a feedstock in NEOM Region, Tabuk. Ecotoxicology and Environmental Safety, 2024, 275, 116224.	6.0	0
251	Multifunctional sulfur doping in cobalt-based materials for high-energy density supercapacitors. Nanotechnology, 2024, 35, 225604.	2.6	0
252	Enhancing water desalination and power generation in microbial desalination cells: A comprehensive review of effective parameters and structural types for optimal performance. Journal of Power Sources, 2024, 602, 234267.	7.8	0