Unravelling the Open-Shell Character of Peripentacene

Journal of Physical Chemistry Letters 12, 330-336 DOI: 10.1021/acs.jpclett.0c02518

Citation Report

CITATION REDORT

#	Article	IF	CITATIONS
1	Persistent <i>peri</i> â€Heptacene: Synthesis and In Situ Characterization. Angewandte Chemie, 2021, 133, 13972-13977.	2.0	11
2	Persistent <i>peri</i> â€Heptacene: Synthesis and In Situ Characterization. Angewandte Chemie - International Edition, 2021, 60, 13853-13858.	13.8	27
3	On-Surface Synthesis and Characterization of Super-nonazethrene. Journal of Physical Chemistry Letters, 2021, 12, 8314-8319.	4.6	22
4	Renormalization of spin excitations and Kondo effect in open-shell nanographenes. Physical Review B, 2021, 104, .	3.2	21
5	Onâ€Surface Synthesis of a Dicationic Diazahexabenzocoronene Derivative on the Au(111) Surface. Angewandte Chemie - International Edition, 2021, 60, 25551-25556.	13.8	12
6	On‣urface Synthesis and Collective Spin Excitations of a Trianguleneâ€Based Nanostar. Angewandte Chemie, 0, , .	2.0	3
7	On‣urface Synthesis and Collective Spin Excitations of a Trianguleneâ€Based Nanostar. Angewandte Chemie - International Edition, 2021, 60, 25224-25229.	13.8	66
8	On-surface synthesis and characterization of nitrogen-substituted undecacenes. Nature Communications, 2022, 13, 511.	12.8	26
9	Ï€â€Extended <i>peri</i> â€Acenes: Recent Progress in Synthesis and Characterization. European Journal of Organic Chemistry, 2022, 2022, .	2.4	7
10	Magnetic Interactions Between Radical Pairs in Chiral Graphene Nanoribbons. Nano Letters, 2022, 22, 164-171.	9.1	29
11	Synthesis and Characterization of <i>peri</i> â€Heptacene on a Metallic Surface. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
12	Synthesis and Characterization of <i>peri</i> â€Heptacene on a Metallic Surface. Angewandte Chemie, 2022, 134, .	2.0	5
13	Relating vibrational energy with Kekulé―and Clarâ€structureâ€based parameters. International Journal of Quantum Chemistry, 2022, 122, .	2.0	1
14	Magnetism engineering of nanographene: An enrichment strategy by co-depositing diverse precursors on Au(111). Chinese Chemical Letters, 2023, 34, 107450.	9.0	4
15	Surfaceâ€Assisted Synthesis of N <i>â€</i> Containing <i>Ï€</i> â€Conjugated Polymers. Advanced Science, 2022, 9, .	11.2	7
16	How constraint programming can help chemists to generate Benzenoid structures and assess the local Aromaticity of Benzenoids. Constraints, 2022, 27, 192-248.	0.7	0
17	On‣urface Synthesis of Unsaturated Hydrocarbon Chains through Câ^'S Activation. Chemistry - A European Journal, 2022, 28, .	3.3	6
18	Interplay between ï€-Conjugation and Exchange Magnetism in One-Dimensional Porphyrinoid Polymers. Journal of the American Chemical Society, 2022, 144, 12725-12731.	13.7	15

CITATION REPORT

#	Article	IF	CITATIONS
19	Carbon-based nanostructures as a versatile platform for tunable π-magnetism. Journal of Physics Condensed Matter, 2022, 34, 443001.	1.8	31
20	Addressing Electron Spins Embedded in Metallic Graphene Nanoribbons. ACS Nano, 2022, 16, 14819-14826.	14.6	14
21	Excitation spectra of fully correlated donor-acceptor complexes by density matrix renormalisation group. Molecular Physics, 2023, 121, .	1.7	1
23	Steering Large Magnetic Exchange Coupling in Nanographenes near the Closed-Shell to Open-Shell Transition. Journal of the American Chemical Society, 2023, 145, 2968-2974.	13.7	12
24	On-Surface Synthesis of Nanographenes and Graphene Nanoribbons on Titanium Dioxide. ACS Nano, 2023, 17, 2580-2587.	14.6	9
25	Closed-shell and open-shell dual nature of singlet diradical compounds. Pure and Applied Chemistry, 2023, .	1.9	2
26	Triangle Counting Rule: An Approach to Forecast the Magnetic Properties of Benzenoid Polycyclic Hydrocarbons. Journal of Physical Chemistry Letters, 2023, 14, 3193-3198.	4.6	5
27	Dimeric tetrabromo- <i>p</i> -quinodimethanes: Synthesis and structural/electronic properties. Chemical Science, 0, , .	7.4	0
28	Generating antiaromaticity in polycyclic conjugated hydrocarbons by thermally selective skeletal rearrangements at interfaces. , 2023, 2, 1159-1170.		2
29	Emergence of π-Magnetism in Fused Aza-Triangulenes: Symmetry and Charge Transfer Effects. Nano Letters, 2023, 23, 9832-9840.	9.1	0
30	Lengthâ€Dependent Magnetic Evolution of Anthenes on Au(111). Angewandte Chemie, 2023, 135, .	2.0	0
31	Lengthâ€Dependent Magnetic Evolution of Anthenes on Au(111). Angewandte Chemie - International Edition, 2023, 62, .	13.8	0
32	Magnetic properties of laterally connected super-zethrene chains: Insights from spin-polarized calculations. Journal of Magnetism and Magnetic Materials, 2024, 590, 171684.	2.3	0
33	Deciphering the Mechanism of On-Surface Dehydrogenative C–C Coupling Reactions. Journal of the American Chemical Society, 2024, 146, 1849-1859.	13.7	0
34	On-Surface Synthesis of a Radical 2D Supramolecular Organic Framework. Journal of the American Chemical Society, 2024, 146, 3531-3538.	13.7	0
35	Highly entangled polyradical nanographene with coexisting strong correlation and topological frustration. Nature Chemistry, 0, , .	13.6	0
36	<i>Peri</i> -Tetracene from 1,1′-Bitetracene: Zipping up Structurally Defined Graphene Nanoribbons. Journal of Physical Chemistry C, 2024, 128, 4048-4059.	3.1	0