Revisiting magnesium oxide to boost hydrogen product Mechanistic study to economic evaluation

Applied Catalysis B: Environmental 284, 119701 DOI: 10.1016/j.apcatb.2020.119701

Citation Report

#	Article	IF	CITATIONS
1	Effects of precipitants on the catalytic performance of Cu/CeO ₂ catalysts for the water–gas shift reaction. Catalysis Science and Technology, 2021, 11, 6380-6389.	4.1	17
2	Enhanced oxygen mobility of nonreducible MgO-supported Cu catalyst by defect engineering for improving the water-gas shift reaction. Journal of Catalysis, 2021, 400, 195-211.	6.2	15
3	Understanding the enhancement of CaO on water gas shift reaction for H2 production by density functional theory. Fuel, 2021, 303, 121257.	6.4	18
4	Biohydrogen production by glycerol Aqueous-Phase Reforming: Effect of promoters (Ce or Mg) in the NiAl2O4 spinel-derived catalysts. Journal of Environmental Chemical Engineering, 2021, 9, 106433.	6.7	7
5	Sensitivity analysis and artificial neural network-based optimization for low-carbon H2 production via a sorption-enhanced steam methane reforming (SESMR) process integrated with separation process. International Journal of Hydrogen Energy, 2022, 47, 820-847.	7.1	21
6	Dynamic CO2 sorption on MgO-based sorbent in the presence of CO and H2O at elevated pressures. Chemical Engineering Journal, 2022, 433, 134607.	12.7	10
7	Engineering VO-Ti ensemble to boost the activity of Ru towards water dissociation for catalytic hydrogen generation. Applied Catalysis B: Environmental, 2022, 306, 121100.	20.2	55
8	Extraordinary Promotion of Visible-Light Hydrogen Evolution for Graphitic Carbon Nitride by Introduction of Accumulated Electron Sites (BN ₂). ACS Applied Energy Materials, 2022, 5, 7479-7489.	5.1	2
9	Efficient removal of 2-chloroethyl ethyl sulfide in solution under solar light by magnesium oxide-decorated polymeric carbon nitride photocatalysts and mechanism investigation. Environmental Advances, 2022, 9, 100255.	4.8	4
10	Ni nanoparticles enclosed in highly mesoporous nanofibers with oxygen vacancies for efficient CO2 methanation. Applied Catalysis B: Environmental, 2022, 317, 121715.	20.2	41
11	Ensemble process for producing high-purity H2 via simultaneous in situ H2 extraction and CO2 capture. Cell Reports Physical Science, 2022, 3, 101003.	5.6	1
12	Pelletized activated carbon-based CO-selective adsorbent with highly oxidation-stable and aggregation-resistant Cu(I) sites. Chemical Engineering Journal, 2023, 451, 138758.	12.7	5
13	Highly active and stable Cu Fe /AC-H catalysts with CuFe2O4 for NO reduction by CO in the presence of H2O and SO2 under regeneration gas. Chemical Engineering Journal, 2023, 458, 141304.	12.7	3
14	Promoting Molecular Exchange on Rare-Earth Oxycarbonate Surfaces to Catalyze the Water–Gas Shift Reaction. Journal of the American Chemical Society, 2023, 145, 2252-2263.	13.7	8
15	Interfaces and Oxygen Vacancies-Enriched Catalysts Derived from Cu-Mn-Al Hydrotalcite towards High-Efficient Water–Gas Shift Reaction. Molecules, 2023, 28, 1522.	3.8	1
16	CeO ₂ /Cu ₂ O/Cu Tandem Interfaces for Efficient Water–Gas Shift Reaction Catalysis. ACS Applied Materials & Interfaces, 2023, 15, 31584-31594.	8.0	1
17	The green synthesis of magnesium oxide nanocomposite-based solid phase for the extraction of arsenic, cadmium, and lead from drinking water. Analytical Methods, 0, , .	2.7	0
18	A study on the activity recovery behavior of noble metal catalysts against sulfur poisoning. Catalysis Today, 2024, 425, 114361.	4.4	1

#	Article	IF	CITATIONS
19	From waste to wealth: Using MgO nanoparticles to transform ammonium into a valuable resource. Journal of Water Process Engineering, 2023, 56, 104331.	5.6	1
20	Mg-incorporated sorbent for efficient removal of trace CO from H2 gas. Nature Communications, 2023, 14, .	12.8	0