Interfacial Engineering for Improved Photocatalysis in Melamine Functionalized Poly(heptazine imide)

Advanced Energy Materials 11, 2003016 DOI: 10.1002/aenm.202003016

Citation Report

#	Article	IF	CITATIONS
1	Harnessing the Potential of Graphitic Carbon Nitride for Optoelectronic Applications. Advanced Optical Materials, 2021, 9, 2100146.	3.6	22
2	Morphology Control in 2D Carbon Nitrides: Impact of Particle Size on Optoelectronic Properties and Photocatalysis. Advanced Functional Materials, 2021, 31, 2102468.	7.8	63
3	2D Metalâ€Free Nanomaterials Beyond Graphene and Its Analogues toward Electrocatalysis Applications. Advanced Energy Materials, 2021, 11, 2101202.	10.2	24
4	A Tourâ€Guide through Carbon Nitride‣and: Structure―and Dimensionalityâ€Dependent Properties for Photo(Electro)Chemical Energy Conversion and Storage. Advanced Energy Materials, 2022, 12, 2101078.	10.2	81
5	Roles of Graphene Oxide in Heterogeneous Photocatalysis. ACS Materials Au, 2021, 1, 37-54.	2.6	56
6	Defect engineering assisted support effect:IrO2/N defective g-C3N4 composite as highly efficient anode catalyst in PEM water electrolysis. Chemical Engineering Journal, 2021, 419, 129455.	6.6	28
7	Sustainable one-step synthesis of nanostructured potassium poly(heptazine imide) for highly boosted photocatalytic hydrogen evolution. Chemical Engineering Journal, 2021, 424, 130332.	6.6	18
8	High-energy ball-milling constructing P-doped g-C3N4/MoP heterojunction with Mo N bond bridged interface and Schottky barrier for enhanced photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2022, 303, 120933.	10.8	93
9	Crystallinity Modulation of Electron Acceptor in Oneâ€Photon Excitation Pathwayâ€Based Heterostructure for Visibleâ€Light Photocatalysis. Solar Rrl, 2022, 6, 2100901.	3.1	7
10	Design of porous organic polymer photocatalysts based on heptazine for efficient photocatalytic aerobic oxidation. Chemical Engineering Journal, 2022, 431, 134051.	6.6	13
11	Light-driven carbon nitride microswimmers with propulsion in biological and ionic media and responsive on-demand drug delivery. Science Robotics, 2022, 7, eabm1421.	9.9	52
12	Conductivity Mechanism in Ionic 2D Carbon Nitrides: From Hydrated Ion Motion to Enhanced Photocatalysis. Advanced Materials, 2022, 34, e2107061.	11.1	49
13	Non-photochromic solar energy storage in carbon nitride surpassing blue radicals for hydrogen production. Journal of Materials Chemistry A, 2022, 10, 7728-7738.	5.2	13
14	Photoactive nanomaterials enabled integrated photo-rechargeable batteries. Nanophotonics, 2022, 11, 1443-1484.	2.9	9
15	Photomemristive sensing <i>via</i> charge storage in 2D carbon nitrides. Materials Horizons, 2022, 9, 1866-1877.	6.4	11
17	One-pot synthesis of sodium-doped willow-shaped graphitic carbon nitride for improved photocatalytic activity under visible-light irradiation. Journal of Colloid and Interface Science, 2022, 624, 79-87.	5.0	30
18	Activation of Fe species on graphitic carbon nitride nanotubes for efficient photocatalytic ammonia synthesis. International Journal of Energy Research, 2022, 46, 13453-13462.	2.2	3
19	Molecular engineering of donor-acceptor structured g-C3N4 for superior photocatalytic oxytetracycline degradation. Chemical Engineering Journal, 2022, 448, 137370.	6.6	70

#	Article	IF	CITATIONS
20	Enhanced H ₂ O ₂ Production via Photocatalytic O ₂ Reduction over Structurally-Modified Poly(heptazine imide). Chemistry of Materials, 2022, 34, 5511-5521.	3.2	21
21	Donor-acceptor conjugated heptazine polymers: Boosting the Cr(VI) photoreductions via heteroatom engineering. Materials Today Communications, 2022, 31, 103825.	0.9	1
22	Melem-derived poly(heptazine imide) for effective charge transport and photocatalytic reforming of cellulose into H2 and biochemicals under visible light. Applied Catalysis B: Environmental, 2022, 316, 121601.	10.8	16
23	Interfacial Engineering of the Platinum/Molybdenum Disulfide/graphitic Carbon Nitride Composite for Enhanced Photocatalytic Hydrogen Production. ACS Applied Energy Materials, 2022, 5, 8800-8811.	2.5	11
24	Defect-rich ultrathin poly-heptazine-imide-framework nanosheets with alkali-ion doping for photocatalytic solar hydrogen and selective benzylamine oxidation. Nano Research, 2022, 15, 8760-8770.	5.8	7
25	Engineering Electro- and Photocatalytic Carbon Materials for CO ₂ Reduction by Formate Dehydrogenase. Journal of the American Chemical Society, 2022, 144, 14207-14216.	6.6	35
26	Defect engineering in polymeric carbon nitride with accordion structure for efficient photocatalytic CO2 reduction and H2 production. Chemical Engineering Journal, 2022, 450, 138425.	6.6	35
27	A Crystalline Carbon Nitride Based Nearâ€Infrared Active Photocatalyst. Advanced Functional Materials, 2022, 32, .	7.8	67
28	Optimizing the Optical Absorption of Poly(heptazine imide) by the n → π* Electron Transition for Improved Photocatalytic H ₂ Evolution. ACS Applied Materials & Interfaces, 2022, 14, 41131-41140.	4.0	13
29	Heptazineâ€Based Orderedâ€Distorted Copolymers with Enhanced Visibleâ€Light Absorption for Photocatalytic Hydrogen Production. ChemSusChem, 2022, 15, .	3.6	32
30	Photocatalytic Activity and Electron Storage Capability of TiO ₂ Aerogels with an Adjustable Surface Area. ACS Applied Energy Materials, 2022, 5, 14966-14978.	2.5	3
31	Alkali Metal Cations as Chargeâ€Transfer Bridge for Polarization Promoted Solarâ€ŧoâ€H ₂ Conversion. Advanced Functional Materials, 2023, 33, .	7.8	9
32	Covalent Organic Frameworks Containing Dual O ₂ Reduction Centers for Overall Photosynthetic Hydrogen Peroxide Production. Angewandte Chemie, 2023, 135, .	1.6	6
33	Covalent Organic Frameworks Containing Dual O ₂ Reduction Centers for Overall Photosynthetic Hydrogen Peroxide Production. Angewandte Chemie - International Edition, 2023, 62, .	7.2	52
34	Structure and Optical Properties of Polymeric Carbon Nitrides from Atomistic Simulations. Chemistry of Materials, 2023, 35, 1547-1559.	3.2	9
35	An integrated solar battery based on a charge storing 2D carbon nitride. Energy and Environmental Science, 2023, 16, 1520-1530.	15.6	12
36	Stored photoelectrons in a faradaic junction for decoupled solar hydrogen production in the dark. CheM, 2023, 9, 1850-1864.	5.8	9
37	Carbon Vacancy-Modified Carbon Nitride Allotropic Composite for Solar Hydrogen Generation Coupled with Selective Oxidation of 5-Hydroxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2023, 11, 6435-6444.	3.2	3

CITATION REPORT

#	Article	IF	CITATIONS
38	Optimizing the band structure of sponge-like S-doped poly(heptazine imide) with quantum confinement effect towards boosting visible-light photocatalytic H2 generation. Journal of Colloid and Interface Science, 2023, 644, 116-123.	5.0	5
45	Carbon nitride based materials: more than just a support for single-atom catalysis. Chemical Society Reviews, 2023, 52, 4878-4932.	18.7	31
58	Crystalline carbon nitrides for photocatalysis. , 2024, 2, 411-447.		1