Deoxynivalenol exposure assessment through a modell biomonitoring data – A contribution to the risk assess mycotoxin

Food Research International 140, 109863 DOI: 10.1016/j.foodres.2020.109863

Citation Report

#	Article	IF	CITATIONS
1	Deoxynivalenol contamination in cereal-based foodstuffs from Spain: Systematic review and meta-analysis approach for exposure assessment. Food Control, 2022, 132, 108521.	5.5	14
2	Neurotoxic Potential of Deoxynivalenol in Murine Brain Cell Lines and Primary Hippocampal Cultures. Toxins, 2022, 14, 48.	3.4	8
3	Toxicokinetics and metabolism of deoxynivalenol in animals and humans. Archives of Toxicology, 2022, 96, 2639-2654.	4.2	34
4	Chemical Contamination in Bread from Food Processing and Its Environmental Origin. Molecules, 2022, 27, 5406.	3.8	3
5	Occurrence and Exposure Assessment of Deoxynivalenol and Its Acetylated Derivatives from Grains and Grain Products in Zhejiang Province, China (2017–2020). Toxins, 2022, 14, 586.	3.4	3
6	Deoxynivalenol triggers porcine intestinal tight junction disorder: Insights from mitochondrial dynamics and mitophagy. Ecotoxicology and Environmental Safety, 2022, 248, 114291.	6.0	13
7	Dose and route dependent effects of the mycotoxin deoxynivalenol in a 3D gut-on-a-chip model with flow. Toxicology in Vitro, 2023, 88, 105563.	2.4	4
8	Biomonitoring of 19 Mycotoxins in Plasma from Food-Producing Animals (Cattle, Poultry, Pigs, and) Tj ETQq1 1 0	.784314 r	g&T /Overloo
9	Risk Assessment Considering the Bioavailability of 3-Î ² -d-Glucosides of Deoxynivalenol and Nivalenol through Food Intake in Korea. Toxins, 2023, 15, 460.	3.4	1
10	Inherent toxicants. , 2023, , 33-57.		0
11	Foodborne Disease Outbreaks Caused by Biotoxins in Yantai City: A 10-Year Spatiotemporal Monitoring Study. Foodborne Pathogens and Disease, 2024, 21, 194-202.	1.8	0
12	Mycotoxins in grains (products), Gansu province, China and risk assessment. Food Additives and Contaminants: Part B Surveillance, 0, , 1-9.	2.8	Ο