Decarboxylative Halogenation of Organic Compounds

Chemical Reviews 121, 412-484

DOI: 10.1021/acs.chemrev.0c00813

Citation Report

#	Article	IF	CITATIONS
1	A practical route to 2-iodoanilines <i>via</i> the transition-metal-free and base-free decarboxylative iodination of anthranilic acids under oxygen. Organic Chemistry Frontiers, 2021, 8, 4479-4484.	2.3	1
2	Enantioselective decarboxylative protonation and deuteration of β-ketocarboxylic acids. Chemical Communications, 2021, 57, 6676-6679.	2.2	6
3	Transition-metal-free decarboxylative <i>ipso</i> amination of aryl carboxylic acids. Organic Chemistry Frontiers, 2021, 8, 3434-3439.	2.3	4
4	Decarboxylative C–H alkylation of heteroarenes by copper catalysis. Organic Chemistry Frontiers, 2021, 8, 3128-3136.	2.3	18
5	A highly selective decarboxylative deuteration of carboxylic acids. Chemical Science, 2021, 12, 5505-5510.	3.7	36
6	Synthetic applications of α,α-difluoroarylacetic acids and salts <i>via</i> decarboxylative functionalization. Organic Chemistry Frontiers, 2021, 8, 5516-5530.	2.3	18
7	Recent developments in decarboxylative C(aryl)–X bond formation from (hetero)aryl carboxylic acids. Organic and Biomolecular Chemistry, 2021, 19, 5476-5500.	1.5	8
8	Radical Decarboxylative Carbometalation of Benzoic Acids: A Solution to Aromatic Decarboxylative Fluorination. Journal of the American Chemical Society, 2021, 143, 5349-5354.	6.6	106
9	Utilization of C(<i>sp</i> ³) arboxylic Acids and Their Redoxâ€Active Esters in Decarboxylative Carbonâ^'Carbon Bond Formation. Advanced Synthesis and Catalysis, 2021, 363, 3693-3736.	2.1	64
10	Recent advances in the radical-mediated decyanative alkylation of cyano(hetero)arene. Green Synthesis and Catalysis, 2021, 2, 145-155.	3.7	63
11	Decarboxylationâ€Initiated Intermolecular Carbonâ€Heteroatom Bond Formation. Advanced Synthesis and Catalysis, 2021, 363, 2678-2722.	2.1	59
12	Decarboxylative Oxyacyloxylation of Propiolic Acids: Construction of Alkynyl-Containing α-Acyloxy Ketones. Journal of Organic Chemistry, 2021, 86, 8216-8225.	1.7	6
13	Palladium atalyzed Decarbonylative Iodination of Aryl Carboxylic Acids Enabled by Ligandâ€Assisted Halide Exchange. Angewandte Chemie - International Edition, 2021, 60, 17211-17217.	7.2	19
14	Palladiumâ€katalysierte decarbonylierende Iodierung von Carbonsären, ermöglicht durch Ligandâ€unterstÁ¼tzten Halogenaustausch. Angewandte Chemie, 2021, 133, 17348-17355.	1.6	2
15	Decarboxylative Hydroxylation of Benzoic Acids. Angewandte Chemie, 2021, 133, 24214-24219.	1.6	9
16	Photoinduced Hydrocarboxylation via Thiol-Catalyzed Delivery of Formate Across Activated Alkenes. Journal of the American Chemical Society, 2021, 143, 13022-13028.	6.6	71
17	Decarboxylative Hydroxylation of Benzoic Acids. Angewandte Chemie - International Edition, 2021, 60, 24012-24017.	7.2	49
18	Advances in the Methods for the Synthesis of Carbon Dots and Their Emerging Applications. Polymers, 2021, 13, 3190.	2.0	56

#	Article	IF	CITATIONS
19	Palladium atalyzed Asymmetric Markovnikov Hydroxycarbonylation and Hydroalkoxycarbonylation of Vinyl Arenes: Synthesis of 2â€Arylpropanoic Acids. Angewandte Chemie - International Edition, 2021, 60, 23117-23122.	7.2	50
20	Palladium atalyzed Asymmetric Markovnikov Hydroxycarbonylation and Hydroalkoxycarbonylation of Vinyl Arenes: Synthesis of 2â€Arylpropanoic Acids. Angewandte Chemie, 2021, 133, 23301-23306.	1.6	10
21	Photocatalytic decarboxylative amidosulfonation enables direct transformation of carboxylic acids to sulfonamides. Chemical Science, 2021, 12, 6429-6436.	3.7	39
22	MOF-Zn-NHC as an efficient N-heterocyclic carbene catalyst for aerobic oxidation of aldehydes to their corresponding carboxylic acids <i>via</i> a cooperative geminal anomeric based oxidation. RSC Advances, 2021, 11, 36230-36236.	1.7	11
23	Advances in the Development of Trifluoromethoxylation Reagents. Symmetry, 2021, 13, 2380.	1.1	14
24	Catalytic remote hydrohalogenation of internal alkenes. Nature Chemistry, 2022, 14, 425-432.	6.6	22
25	Visible light photocatalytic one pot synthesis of <i>Z</i> -arylvinyl halides from <i>E</i> -arylvinyl acids with <i>N</i> -halosuccinimide. RSC Advances, 2022, 12, 3931-3934.	1.7	1
26	Aliphatic sulfonyl fluoride synthesis <i>via</i> reductive decarboxylative fluorosulfonylation of aliphatic carboxylic acid NHPI esters. Organic Chemistry Frontiers, 2022, 9, 1115-1120.	2.3	29
27	Copper-Mediated Decarboxylative Coupling of 3-Indoleacetic Acids with Pyrazolones. ACS Omega, 2022, 7, 5274-5282.	1.6	5
28	Cobalt atalyzed Intermolecular Hydroamination of Unactivated Alkenes Using NFSI as Nitrogen Source. Chinese Journal of Chemistry, 0, , .	2.6	4
29	Silica Supported Acids (HClO4-SiO2, KHSO4-SiO2) as Eco-friendly Reusable Catalysts for Bromodecarboxylation of α,β-Unsaturated Carboxylic Acids using KBr under Solvothermal and Solvent-Free Conditions. Asian Journal of Chemistry, 2022, 34, 535-542.	0.1	0
30	Decarboxylative Borylation and Cross-Coupling of (Hetero)aryl Acids Enabled by Copper Charge Transfer Catalysis. Journal of the American Chemical Society, 2022, 144, 6163-6172.	6.6	53
31	Electrochemical Decarboxylative Oxygenation of Carboxylic Acids. ACS Sustainable Chemistry and Engineering, 2022, 10, 5067-5071.	3.2	9
32	Chemoenzymatic Hunsdiecker-Type Decarboxylative Bromination of Cinnamic Acids. ACS Catalysis, 2022, 12, 4554-4559.	5.5	8
33	Catalyst-free Photochemical Bromination of Unprotected Aromatic Amino Acid Derivatives by Using a Rotating Ultraviolet Photoreactor. Chemical Research in Chinese Universities, 0, , 1.	1.3	0
34	Silver-catalysed double decarboxylative addition–cyclisation–elimination cascade sequence for the synthesis of quinolin-2-ones. Organic and Biomolecular Chemistry, 2022, 20, 3469-3474.	1.5	4
35	Air-triggered, catalyst-free decarboxylative oxysulfonylation of arylpropiolic acids with sodium sulfinates. Environmental Chemistry Letters, 0, , .	8.3	2
36	Decarboxylative amination of benzoic acids bearing electron-donating substituents and nonactivated amines. Organic Chemistry Frontiers, 2022, 9, 3281-3292.	2.3	3

# 37	ARTICLE Metal-free three-component assemblies of anilines, \hat{l}_{\pm} -keto acids and alkyl lactates for quinoline synthesis and their anti-inflammatory activity. Organic and Biomolecular Chemistry, 2022, 20,	IF 1.5	CITATIONS
38	4385-4390. A Unified Approach to Decarboxylative Halogenation of (Hetero)aryl Carboxylic Acids. Journal of the American Chemical Society, 2022, 144, 8296-8305.	6.6	67
39	Oxidation of Iodine to Dihaloiodate(I) Salts of Amines With Hydrogen Peroxides and Their Crystal Structures. Frontiers in Chemistry, 2022, 10, .	1.8	0
40	Rapid formation of Csp3–Csp3 bonds through copper-catalyzed decarboxylative Csp3–H functionalization. Chinese Chemical Letters, 2023, 34, 107477.	4.8	12
41	Photoâ€Induced Halogenâ€Atom Transfer: Generation of Halide Radicals for Selective Hydrohalogenation Reactions. Chemistry - A European Journal, 2022, 28, .	1.7	6
42	Transition-Metal-Free Synthesis of Symmetrical 1,4-Diarylsubstituted 1,3-Diynes by Iodine-Mediated Decarboxylative Homocoupling of Arylpropiolic Acids. Tetrahedron Letters, 2022, 102, 153908.	0.7	4
43	Synthesis of Pleuromutilin. Journal of the American Chemical Society, 2022, 144, 10174-10179.	6.6	11
44	Comparable catalytic and biological behavior of alternative polar dioxo-molybdenum (VI) Schiff base hydrazone chelates. Journal of the Taiwan Institute of Chemical Engineers, 2022, 136, 104425.	2.7	11
45	Electrophotochemical Decarboxylative Azidation of Aliphatic Carboxylic Acids. ACS Catalysis, 2022, 12, 10661-10667.	5.5	26
46	Automated grindstone chemistry: a simple and facile way for PEG-assisted stoichiometry-controlled halogenation of phenols and anilines using <i>N</i> -halosuccinimides. Beilstein Journal of Organic Chemistry, 0, 18, 999-1008.	1.3	4
47	Effects of nitrogen and sulfur atom regulation on electrochemical properties of Na3V2(PO4)2F3 cathode material for Na-ion batteries. Ceramics International, 2022, , .	2.3	3
48	A Photochemoenzymatic Hunsdieckerâ€Borodinâ€Type Halodecarboxylation of Ferulic Acid. ChemBioChem, 0, , .	1.3	6
49	Visible-Light-Induced Decarboxylative Fluorination of Aliphatic Carboxylic Acids Catalyzed by Iron. Organic Letters, 2022, 24, 5972-5976.	2.4	33
50	<scp>Microwaveâ€assisted</scp> decarboxylation of <scp>2<i>H</i>â€Pyranâ€3 arboxylic</scp> acid derivatives under basic condition. Journal of Heterocyclic Chemistry, 2022, 59, 2258-2265.	1.4	1
51	Visible-light promoted photocatalyst-free aerobic α-oxidation of tertiary amines to amides. Organic and Biomolecular Chemistry, 2022, 20, 8031-8036.	1.5	7
52	Copper-catalyzed direct decarboxylative fluorosulfonylation of aliphatic carboxylic acids. Chemical Communications, 2022, 58, 9409-9412.	2.2	18
53	Electrochemically Generated Iodine Cations from a Glassy Carbon Electrode for Highly Selective Iodination of Anisole. Transactions of Tianjin University, 0, , .	3.3	2
54	Microwave-assisted decarboxylative reactions: advanced strategies for sustainable organic synthesis. Organic and Biomolecular Chemistry, 2022, 20, 8569-8583.	1.5	3

CITATION REPORT

#	Article	IF	CITATIONS
55	Palladium-Catalyzed Carbonylation of Aryl Bromides with Carbon Dioxide To Access Aryl Carboxylic Acids under Mild Conditions. Journal of Organic Chemistry, 2023, 88, 5205-5211.	1.7	4
56	Photoelectrochemical Asymmetric Catalysis Enables Direct and Enantioselective Decarboxylative Cyanation. Journal of the American Chemical Society, 2022, 144, 20201-20206.	6.6	47
57	Decarboxylative sulfoximination of benzoic acids enabled by photoinduced ligand-to-copper charge transfer. Chemical Science, 2022, 13, 13611-13616.	3.7	25
58	Chemoselective Decarboxylative Protonation Enabled by Cooperative Earthâ€Abundant Element Catalysis. Angewandte Chemie - International Edition, 2023, 62, .	7.2	19
59	Halogenation of Unsaturated Amides: Synthesis of Halogenated (Spiro)Oxazolines. ChemistrySelect, 2022, 7, .	0.7	0
60	Chemoselective Decarboxylative Protonation Enabled by Cooperative Earthâ€Abundant Element Catalysis. Angewandte Chemie, 0, , .	1.6	1
61	Access to Polysubstituted Halophosphorylated Dihydrofurans via Halotrimethylsilane-Promoted Cascade Cyclization of γ-Hydroxyl Ynones with Diphenylphosphine Oxides. Organic Letters, 2022, 24, 8609-8614.	2.4	4
62	<i>N</i> -Haloimide-enabled halogenation <i>via</i> halogen-bond-assisted C–C activation of alkanols. Green Chemistry, 2023, 25, 221-228.	4.6	2
63	Electrocatalytic synthesis: an environmentally benign alternative for radical-mediated aryl/alkenyl C(sp ²)–C(sp ³) cross-coupling reactions. Green Chemistry, 2022, 24, 9373-9401.	4.6	17
64	Electrophilic Halogen Reagents-mediated Halogenation: Synthesis of Halogenated Dihydro-1,3-oxazine Derivatives. Chemical Research in Chinese Universities, 0, , .	1.3	0
65	Photoinduced Ligandâ€ŧoâ€Metal Charge Transfer of Carboxylates: Decarboxylative Functionalizations, Lactonizations, and Rearrangements. Advanced Synthesis and Catalysis, 2022, 364, 4189-4230.	2.1	21
66	Synthesis of Benzylic Alcohols by Decarboxylative Hydroxylation. Organic Letters, 2023, 25, 47-52.	2.4	6
67	Metal -free PhI(OAc) ₂ -oxidized decarboxylation of propiolic acids towards synthesis of α-acetoxy ketones and insights into general decarboxylation with DFT calculations. Organic and Biomolecular Chemistry, 0, , .	1.5	0
68	Sustainable photoinduced decarboxylative chlorination mediated by halogen atom transfer. Green Chemistry, 2023, 25, 560-565.	4.6	8
69	Electrophotochemical Metal atalyzed Enantioselective Decarboxylative Cyanation. Chemistry - A European Journal, 2023, 29, .	1.7	9
70	Construction of superior performance Na3V2-xCrx(PO4)2F3/C cathode by homovalent doping strategy toward enhanced sodium ion storage. Journal of Power Sources, 2023, 571, 233080.	4.0	7
71	Visible-light-induced controllable α-chlorination of nafimidone derivatives through LMCT excitation of CuCl2. Molecular Catalysis, 2023, 537, 112950.	1.0	2
73	Visible-light-driven direct decarboxylative carbonylation of carboxylic acids using acridine photocatalysis in oxygen-liquid flow. Chemical Engineering Journal, 2023, 461, 141767.	6.6	3

IF ARTICLE CITATIONS # Dithiocarbamate-mediated thioamidation of arylglyoxylic acids by decarboxylative–decarbonylative 74 2.3 4 C–C bond formation reactions. Organic Chemistry Frontiers, 2023, 10, 1686-1693. Deaminative bromination, chlorination, and iodination of primary amines. IScience, 2023, 26, 106255. Photoelectrochemical Cerium Catalysis via Ligand-to-Metal Charge Transfer: A Rising Frontier in 76 1.2 1 Sustainable Organic Synthesis. Synthesis, 0, , . Photoinduced Metalâ€Free Decarboxylative Transformations: Rapid Access to Amines, Alkyl Halides, and 1.2 Olefins. European Journal of Organic Ćhemistry, 2023, 26, . Transition metal-catalyzed alkynylation reactions <i>via</i> alkynyl carbonâ€"carbon bond cleavage. 78 2.3 1 Organic Chemistry Fróntiers, 2023, 10, 2081-2094. Free Carboxylic Acids: The Trend of Radical Decarboxylative Functionalization. European Journal of 79 1.2 Organic Chémistry, 2023, 26, . Photoinduced FeCl₃-Catalyzed Chlorination of Aromatic Sulfonyl Chloride via Extrusion 84 2.4 0 of SO₂ at Room Temperature. Organic Letters, 2023, 25, 4576-4580. Decarboxylative Amidation of Aryl/Heteroarylacetic Acids via Activated Esters through Traceless 2.4 α-Functionalized Benzylic Radicals. Organic Letters, 2023, 25, 3402-3406. Synthesis of unsymmetrical ketones $\langle i \rangle via \langle i \rangle$ dual catalysed cross-coupling of $\hat{I}\pm, \hat{I}^2$ -unsaturated 110 2.2 1 carboxylic acids with aryldiazonium salts. Chemical Communications, 2023, 59, 14827-14830. Decarboxylative halogenation of aliphatic carboxylic acids catalyzed by iron salts under visible light. 121 2.2 Chemical Communications, 2024, 60, 2764-2767.

CITATION REPORT