Optically Triggered Synchronous Heat Release of Phase Energy in Phase hange Materials at Low Temperatur

Advanced Functional Materials 31, 2008496 DOI: 10.1002/adfm.202008496

Citation Report

#	Article	IF	CITATIONS
1	Solar energy conversion and storage by photoswitchable organic materials in solution, liquid, solid, and changing phases. Journal of Materials Chemistry C, 2021, 9, 11444-11463.	2.7	46
2	Tailoring effects of the chain length and terminal substituent on the photochromism of solid-state spiropyrans. Organic and Biomolecular Chemistry, 2021, 19, 8722-8726.	1.5	6
3	Phase change material-integrated latent heat storage systems for sustainable energy solutions. Energy and Environmental Science, 2021, 14, 4268-4291.	15.6	193
4	Design of phase-transition molecular solar thermal energy storage compounds: compact molecules with high energy densities. Chemical Communications, 2021, 57, 9458-9461.	2.2	31
5	Thermal Energy Harvest and Reutilization by the Combination of Thermal Conducting Reactive Mesogens and Heat-Storage Mesogens. ACS Applied Materials & Interfaces, 2021, 13, 13637-13647.	4.0	4
6	Arylazopyrazole-Based Dendrimer Solar Thermal Fuels: Stable Visible Light Storage and Controllable Heat Release. ACS Applied Materials & Interfaces, 2021, 13, 22655-22663.	4.0	33
7	Direct Characterization of Thermal Nonequilibrium between Optical and Acoustic Phonons in Graphene Paper under Photon Excitation. Advanced Science, 2021, 8, 2004712.	5.6	12
8	Photoswitchable solvent-free DNA thermotropic liquid crystals toward self-erasable shape information recording biomaterials. Materials Today Bio, 2021, 12, 100140.	2.6	8
9	Mainchain Alternating Azopolymers with Fast Photo-Induced Reversible Transition Behavior. Macromolecules, 2021, 54, 10040-10048.	2.2	19
10	Photoswitchable phase change materials for unconventional thermal energy storage and upgrade. Matter, 2021, 4, 3385-3399.	5.0	46
11	Enhancement of Solar Thermal Fuel by Microphase Separation and Nanoconfinement of a Block Copolymer. Chemistry of Materials, 2021, 33, 9750-9759.	3.2	19
12	Storing energy with molecular photoisomers. Joule, 2021, 5, 3116-3136.	11.7	86
13	Ultraâ€Stable Phase Change Coatings by Selfâ€Crossâ€Linkable Reactive Poly(ethylene glycol) and MWCNTs. Advanced Functional Materials, 2022, 32, 2108000.	7.8	31
14	Molecular Solar Thermal Systems towards Phase Change and Visible Light Photon Energy Storage. Small, 2022, 18, e2107473.	5.2	21
15	Functional Unit Construction for Heat Storage by Using Biomass-Based Composite. Frontiers in Chemistry, 2022, 10, 835455.	1.8	2
16	Thermodynamic stability of <i>cis</i> -azobenzene containing DNA materials based on van der Waals forces. Chemical Communications, 2022, 58, 3811-3814.	2.2	5
17	Magnetically tightened form-stable phase change materials with modular assembly and geometric conformality features. Nature Communications, 2022, 13, 1397.	5.8	41
18	Molecular Dynamics Study of Optically Controlled Phase Change Materials. Journal of Physical Chemistry C, 2022, 126, 5443-5456.	1.5	6

	Сітатіо	Citation Report		
#	Article	IF	CITATIONS	
19	Flexible engineering of advanced phase change materials. IScience, 2022, 25, 104226.	1.9	21	
20	Preparation of flexible photo-responsive film based on novel photo-liquefiable azobenzene derivative for solar thermal fuel application. Dyes and Pigments, 2022, 202, 110277.	2.0	12	
21	Scalable Flexible Phase Change Materials with a Swollen Polymer Network Structure for Thermal Energy Storage. ACS Applied Materials & Interfaces, 2021, 13, 59364-59372.	4.0	36	
22	Waterâ€resistant conductive organogels with sensation and actuation functions for artificial neuroâ€sensory muscular systems. SmartMat, 2022, 3, 632-643.	6.4	12	
23	Exploring Nextâ€Generation Functional Organic Phase Change Composites. Advanced Functional Materials, 2022, 32, .	7.8	42	
24	A rechargeable molecular solar thermal system below 0 °C. Chemical Science, 2022, 13, 6950-6958.	3.7	21	
25	Visible Light-Driven Alkyne-Grafted Ethylene-Bridged Azobenzene Chromophores for Photothermal Utilization. Molecules, 2022, 27, 3296.	1.7	1	
26	Stimuli-Responsive Organic Phase Change Materials: Molecular Designs and Applications in Energy Storage. Accounts of Materials Research, 2022, 3, 634-643.	5.9	20	
27	Azobenzene-Based Solar Thermal Fuels: A Review. Nano-Micro Letters, 2022, 14, .	14.4	28	
28	Catalyst-free, reprocessable, intrinsic photothermal phase change materials networks based on conjugated oxime structure. Chemical Engineering Journal, 2022, 450, 138144.	6.6	18	
29	Cold crystallization and photo-induced thermal behavior of alkyl-derivatized diarylethene molecules. RSC Advances, 2022, 12, 21926-21931.	1.7	0	
30	Supercooled sugar alcohols stabilized by alkali hydroxides for long-term room-temperature phase change solar-thermal energy storage. Chemical Engineering Journal, 2023, 452, 139328.	6.6	4	
31	New Wearable Technologies and Devices to Efficiently Scavenge Energy from the Human Body: State of the Art and Future Trends. Energies, 2022, 15, 6639.	1.6	2	
32	Photoswitches with different numbers of azo chromophores for molecular solar thermal storage. Soft Matter, 2022, 18, 8840-8849.	1.2	4	
33	Photocontrolled Energy Storage in Azobispyrazoles with Exceptionally Large Light Penetration Depths. Journal of the American Chemical Society, 2022, 144, 19430-19436.	6.6	33	
34	Waterwheel-inspired high-performance hybrid electromagnetic-triboelectric nanogenerators based on fluid pipeline energy harvesting for power supply systems and data monitoring. Nanotechnology, 2023, 34, 025401.	1.3	17	
35	Scalable synthesis of paraffin@MoS2-melamine foam composite phase change materials with superior photo-thermal conversion and storage. Journal of Energy Storage, 2022, 56, 105954.	3.9	10	
37	Study on the applicability of photoswitch molecules to optically-controlled thermal energy in different organic phase change materials. Chemical Engineering Journal, 2023, 456, 141051.	6.6	5	

	CITATION R	CITATION REPORT		
#	Article	IF	CITATIONS	
38	Super-flexible phase change materials with a dual-supporting effect for solar thermoelectric conversion in the ocean environment. Journal of Materials Chemistry A, 2022, 11, 341-351.	5.2	9	
39	Photoliquefiable Azobenzene Surfactants toward Solar Thermal Fuels that Upgrade Photon Energy Storage via Molecular Design. Small, 2023, 19, .	5.2	4	
40	Polyacrylate Backbone Promotes Photoinduced Reversible Solid-To-Liquid Transitions of Azobenzene-Containing Polymers. Macromolecules, 2023, 56, 448-456.	2.2	11	
41	Optically Controlled Recovery and Recycling of Homogeneous Organocatalysts Enabled by Photoswitches. Angewandte Chemie, 0, , .	1.6	Ο	
42	Optically Controlled Recovery and Recycling of Homogeneous Organocatalysts Enabled by Photoswitches. Angewandte Chemie - International Edition, 2023, 62, .	7.2	11	
43	Efficient and Robust Molecular Solar Thermal Fabric for Personal Thermal Management. Advanced Materials, 2023, 35, .	11.1	11	
44	Wearable Janusâ€Type Film with Integrated Allâ€Season Active/Passive Thermal Management, Thermal Camouflage, and Ultraâ€High Electromagnetic Shielding Efficiency Tunable by Origami Process. Advanced Functional Materials, 2023, 33, .	7.8	41	
45	Coâ€Harvest Phaseâ€Change Enthalpy and Isomerization Energy for Highâ€Energy Heat Output by Controlling Crystallization of Alkylâ€Grafted Azobenzene Molecules. Energy and Environmental Materials, 0, , .	7.3	4	
46	High Solar Energy Absorption and Human Body Radiation Reflection Janus Textile for Personal Thermal Management. Advanced Fiber Materials, 2023, 5, 955-967.	7.9	7	
47	Classification of phase change materials. , 2023, , 95-112.		1	
48	Phase Change Thermal Storage Materials for Interdisciplinary Applications. Chemical Reviews, 2023, 123, 6953-7024.	23.0	79	
51	Optically-Controlled Variable-Temperature Storage and Upgrade of Thermal Energy by Photoswitchable Phase Change Materials. , 2023, 5, 2019-2027.		6	
55	Recent progress in photoinduced transitions between the solid, glass, and liquid states based on molecular photoswitches. Polymer Journal, 2024, 56, 269-282.	1.3	0	