Analogue computing with metamaterials

Nature Reviews Materials 6, 207-225 DOI: 10.1038/s41578-020-00243-2

Citation Report

#	Article	IF	CITATIONS
1	Machine learning based on wave and diffusion physical systems. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 144204.	0.5	2
2	Asymmetric Metal-Dielectric Metacylinders and Their Potential Applications From Engineering Scattering Patterns to Spatial Optical Signal Processing. Physical Review Applied, 2021, 15, .	3.8	7
3	Analog signal processing through space-time digital metasurfaces. Nanophotonics, 2021, 10, 1753-1764.	6.0	30
4	Surface-Acoustic-Wave Computing of the Grover Quantum Search Algorithm with Metasurfaces. Physical Review Applied, 2021, 15, .	3.8	5
5	Robust edge states of subwavelength chiral phononic plates. Extreme Mechanics Letters, 2021, 44, 101209.	4.1	25
6	Deep learning in nano-photonics: inverse design and beyond. Photonics Research, 2021, 9, B182.	7.0	222
8	Formation of Chiral Metamaterials by Direct Imprinting of Thin-Film Metal Elements. , 2021, , .		0
9	Recent Advances in Vertically Aligned Nanocomposites with Tunable Optical Anisotropy: Fundamentals and Beyond. Chemosensors, 2021, 9, 145.	3.6	3
10	Isotropic topological second-order spatial differentiator operating in transmission mode. Optics Letters, 2021, 46, 3247.	3.3	22
11	Switchable imaging between edge-enhanced and bright-field based on a phase-change metasurface. Optics Letters, 2021, 46, 3741.	3.3	27
12	Experimental Observation of Phase Transitions in Spatial Photonic Ising Machine. Physical Review Letters, 2021, 127, 043902.	7.8	23
13	Transmissive nonlocal multilayer thin film optical filter for image differentiation. Nanophotonics, 2021, 10, 3519-3525.	6.0	19
14	Laplace metasurfaces for optical analog computing based on quasi-bound states in the continuum. Photonics Research, 2021, 9, 1758.	7.0	36
15	Optical spatiotemporal differentiator using a bilayer plasmonic grating. Optics Letters, 2021, 46, 4418.	3.3	9
16	Control of angular dispersion in dielectric gratings for multifunctional wavefront shaping and dynamic polarization conversion. Photonics Research, 2021, 9, 2190.	7.0	4
17	4D Thermomechanical metamaterials for soft microrobotics. Communications Materials, 2021, 2, .	6.9	25
18	Terahertz wavefront shaping with multi-channel polarization conversion based on all-dielectric metasurface. Photonics Research, 2021, 9, 1939.	7.0	39
19	Meta-optical and thin film devices for all-optical information processing. Applied Physics Reviews, 2021, 8, .	11.3	28

#	Article	IF	CITATIONS
20	Analog optical deconvolution computing for wavefront coding based on nanoantennas metasurfaces. Optics Express, 2021, 29, 32196.	3.4	5
21	All-optical synthesis of an arbitrary linear transformation using diffractive surfaces. Light: Science and Applications, 2021, 10, 196.	16.6	52
22	Light trapping in thin film crystalline silicon solar cells using Multi-Scale photonic topological insulators. Optics and Laser Technology, 2022, 145, 107457.	4.6	8
23	Reciprocal Metasurfaces for On-Axis Reflective Optical Computing. IEEE Transactions on Antennas and Propagation, 2021, 69, 7709-7719.	5.1	13
24	Design and implementation of tunable RF modules for reconfigurable metastructures that perform mathematical computations. , 2021, , .		1
25	TEM pulse routing and switching via series and parallel interconnected waveguide crossings. , 2021, , .		0
26	Superior robustness of anomalous non-reciprocal topological edge states. Nature, 2021, 598, 293-297.	27.8	40
27	Intelligent designs in nanophotonics: from optimization towards inverse creation. PhotoniX, 2021, 2, .	13.5	38
28	All-optical binary computation based on inverse design method. Nanophotonics, 2022, 11, 2117-2127.	6.0	5
29	Enhanced optical spatial differential operations via strong spin-orbit interactions in an anisotropic epsilon-near-zero slab. Physical Review A, 2021, 104, .	2.5	12
30	Compact logic operator utilizing a single-layer metasurface. Photonics Research, 2022, 10, 316.	7.0	19
31	Antiferromagnetic spatial photonic Ising machine through optoelectronic correlation computing. Communications Physics, 2021, 4, .	5.3	12
32	Realization of tunable edge-enhanced images based on computing metasurfaces. Optics Letters, 2022, 47, 925.	3.3	24
33	Polarization-Independent Isotropic Nonlocal Metasurfaces with Wavelength-Controlled Functionality. Physical Review Applied, 2022, 17, .	3.8	14
35	A learning based approach for designing extended unit cell metagratings. Nanophotonics, 2022, 11, 345-358.	6.0	8
36	Spatiotemporal Differentiators Generating Optical Vortices with Transverse Orbital Angular Momentum and Detecting Sharp Change of Pulse Envelope. Laser and Photonics Reviews, 2022, 16, .	8.7	35
37	Experimental demonstration of deeply subwavelength dielectric sensing with epsilon-near-zero (ENZ) waveguides. Applied Physics Letters, 2022, 120, 081106.	3.3	4
38	Nonlocal Scatterer for Compact Wave-Based Analog Computing. Physical Review Letters, 2022, 128, 073201.	7.8	19

# 39	ARTICLE A learning-based approach for metasurface design beyond the unit-cell approximation. , 2022, , .	IF	CITATIONS 0
40	Meta-programmable analog differentiator. Nature Communications, 2022, 13, 1713.	12.8	48
41	Intelligent meta-imagers: From compressed to learned sensing. Applied Physics Reviews, 2022, 9, .	11.3	33
42	Design of Compact Meta-Crystal Slab for General Optical Convolution. ACS Photonics, 2022, 9, 1358-1365.	6.6	12
43	Ultracompact meta-imagers for arbitrary all-optical convolution. Light: Science and Applications, 2022, 11, 62.	16.6	50
44	At the intersection of optics and deep learning: statistical inference, computing, and inverse design. Advances in Optics and Photonics, 2022, 14, 209.	25.5	23
45	A Reconfigurable Metadevice for Solving Equations and Inverting Matrices at RF Frequencies. , 2021, , .		0
46	Exploiting Petri Nets for Graphical Modelling of Electromagnetic Pulse Switching Operations. Advanced Theory and Simulations, 2022, 5, .	2.8	4
48	Unidirectional transparency in epsilon-near-zero based rectangular waveguides induced by parity-time symmetry. Applied Physics Letters, 2021, 119, 263507.	3.3	3
49	Continuous and rapid sound regulation via a compact linear electroacoustic field effect transistor. Physical Review Research, 2021, 3, .	3.6	2
50	Opportunities for Millemeter-Wave Wireless Technologies Using Metasurfaces. , 2021, , .		0
52	Metasurface-Based Imagers Enabled Arbitrary Optical Convolution Processing. Light: Science and Applications, 2022, 11, 98.	16.6	3
53	Single-layer spatial analog meta-processor for imaging processing. Nature Communications, 2022, 13, 2188.	12.8	58
54	Spatially distributed computation in cortical circuits. Science Advances, 2022, 8, eabl5865.	10.3	3
55	Resonance for Analog Recurrent Neural Network. ACS Photonics, 2022, 9, 1647-1654.	6.6	5
56	All optical divergence and gradient operators using surface plasmon polaritons. Optics Express, 2022, 30, 17806.	3.4	2
57	Intelligent metasurfaces: control, communication and computing. ELight, 2022, 2, .	23.9	158
58	Gap coupled symmetric split ring resonator based near zero index ENG metamaterial for gain improvement of monopole antenna. Scientific Reports, 2022, 12, 7406.	3.3	20

#	Article	IF	CITATIONS
59	Electromagnetic wave-based extreme deep learning with nonlinear time-Floquet entanglement. Nature Communications, 2022, 13, 2651.	12.8	8
60	Scattering-coded architectured boundary for computational sensing of elastic waves. Cell Reports Physical Science, 2022, 3, 100918.	5.6	3
61	Highâ€Resolution Programmable Metasurface Imager Based on Multilayer Perceptron Network. Advanced Optical Materials, 2022, 10, .	7.3	16
62	Nonlinear Computational Edge Detection Metalens. Advanced Functional Materials, 2022, 32, .	14.9	19
63	Inverse design of Pancharatnam–Berry phase metasurfaces for all-optical image edge detection. Applied Physics Letters, 2022, 120, .	3.3	16
64	Short-Pulsed Metamaterials. Physical Review Letters, 2022, 128, .	7.8	20
65	Computing metasurfaces enabled chiral edge image sensing. IScience, 2022, 25, 104532.	4.1	11
66	Exploiting waveguide junctions for the switching of transverse electromagnetic pulses of non-constant amplitude. , 2022, , .		0
67	From TEM pulse switching to computing with light. , 2022, , .		0
68	Tunable Wave-Propagation Band gap via Stretching Kirigami Sheets. Physical Review Applied, 2022, 17, .	3.8	4
68 69	Tunable Wave-Propagation Band gap via Stretching Kirigami Sheets. Physical Review Applied, 2022, 17, . Incoherent Optoelectronic Differentiation Based on Optimized Multilayer Films. Laser and Photonics Reviews, 2022, 16, .	3.8 8.7	4
	Incoherent Optoelectronic Differentiation Based on Optimized Multilayer Films. Laser and Photonics		
69	Incoherent Optoelectronic Differentiation Based on Optimized Multilayer Films. Laser and Photonics Reviews, 2022, 16, . Conjugated Polymers for Microwave Applications: Untethered Sensing Platforms and Multifunctional	8.7	11
69 70	Incoherent Optoelectronic Differentiation Based on Optimized Multilayer Films. Laser and Photonics Reviews, 2022, 16, . Conjugated Polymers for Microwave Applications: Untethered Sensing Platforms and Multifunctional Devices. Advanced Materials, 2022, 34, .	8.7 21.0	11
69 70 71	Incoherent Optoelectronic Differentiation Based on Optimized Multilayer Films. Laser and Photonics Reviews, 2022, 16, . Conjugated Polymers for Microwave Applications: Untethered Sensing Platforms and Multifunctional Devices. Advanced Materials, 2022, 34, . Deep learning-enabled compact optical trigonometric operator with metasurface. PhotoniX, 2022, 3, . Physics-aware training for the physical machine learning model building. Innovation(China), 2022, ,	8.7 21.0 13.5	11 11 27
69 70 71 72	Incoherent Optoelectronic Differentiation Based on Optimized Multilayer Films. Laser and Photonics Reviews, 2022, 16, . Conjugated Polymers for Microwave Applications: Untethered Sensing Platforms and Multifunctional Devices. Advanced Materials, 2022, 34, . Deep learning-enabled compact optical trigonometric operator with metasurface. PhotoniX, 2022, 3, . Physics-aware training for the physical machine learning model building. Innovation(China), 2022, , 100287. Fractional Differential Equations in Sports Training in Universities. Applied Mathematics and	8.7 21.0 13.5 9.1	11 11 27 1
 69 70 71 72 73 	Incoherent Optoelectronic Differentiation Based on Optimized Multilayer Films. Laser and Photonics Reviews, 2022, 16, . Conjugated Polymers for Microwave Applications: Untethered Sensing Platforms and Multifunctional Devices. Advanced Materials, 2022, 34, . Deep learning-enabled compact optical trigonometric operator with metasurface. PhotoniX, 2022, 3, . Physics-aware training for the physical machine learning model building. Innovation(China), 2022, , 100287. Fractional Differential Equations in Sports Training in Universities. Applied Mathematics and Nonlinear Sciences, 2023, 8, 247-256.	8.7 21.0 13.5 9.1 1.6	11 11 27 1 0

#	Article	IF	CITATIONS
77	Computing Metasurfaces Enabled Broad-Band Vectorial Differential Interference Contrast Microscopy. ACS Photonics, 2023, 10, 2201-2207.	6.6	12
78	Optical Phase Contrast Microscopy with Incoherent Vortex Phase. Laser and Photonics Reviews, 2022, 16, .	8.7	11
79	Phase contrast imaging with meta-optics. , 2022, , .		0
80	Isotropic Topological Second-Order Spatial Differentiator Operating in Transmission Mode. , 2022, , .		0
81	Inverse-Designed Metastructures Together with Reconfigurable Couplers to Compute Forward Scattering. ACS Photonics, 0, , .	6.6	2
82	Topological spatial differentiators upon reflection of the normally incident light. Optics Letters, 2022, 47, 5425.	3.3	2
83	Mathematical operations and equation solving with reconfigurable metadevices. Light: Science and Applications, 2022, 11, .	16.6	17
84	Acoustic computing: At tunable pseudospin-1 Hermitian Dirac-like cone. Journal of the Acoustical Society of America, 2022, 152, 1449-1462.	1.1	1
85	A novel ultrasonic wave-based analog Fourier transform computing system. AIP Advances, 2022, 12, 105304.	1.3	1
86	Photonic Spin-Hall Differential Microscopy. Physical Review Applied, 2022, 18, .	3.8	22
87	A metalens-based analog computing system for ultrasonic Fourier transform calculations. Scientific Reports, 2022, 12, .	3.3	6
88	Mechanical neural networks: Architected materials that learn behaviors. Science Robotics, 2022, 7, .	17.6	24
89	Realization of all-optical higher-order spatial differentiators based on cascaded operations. Optics Letters, 2022, 47, 5981.	3.3	6
90	Universal Classical Optical Computing Inspired by Quantum Information Process. Annalen Der Physik, 2022, 534, .	2.4	2
91	Engineering by Cuts: How Kirigami Principle Enables Unique Mechanical Properties and Functionalities. Advanced Science, 2023, 10, .	11.2	20
92	Physical computing for materials acceleration platforms. Matter, 2022, 5, 3586-3596.	10.0	1
93	Machine learning-augmented surface-enhanced spectroscopy toward next-generation molecular diagnostics. Nanoscale Advances, 2023, 5, 538-570.	4.6	23
94	Amplitudeâ€Controlled Electromagnetic Pulse Switching Using Waveguide Junctions for Highâ€Speed Computing Processes. Advanced Intelligent Systems, 2022, 4, .	6.1	6

#	Article	IF	Citations
95	Applications of optical microcombs. Advances in Optics and Photonics, 2023, 15, 86.	25.5	37
96	Metasurface-Based Optical Analog Computing: From Fundamentals to Applications. Advanced Devices & Instrumentation, 2022, 2022, .	6.5	4
97	AirNN: Over-the-Air Computation for Neural Networks via Reconfigurable Intelligent Surfaces. IEEE/ACM Transactions on Networking, 2023, 31, 2470-2482.	3.8	3
98	Research progress and development trend of smart metamaterials. Frontiers in Physics, 0, 10, .	2.1	5
99	Parallel temporal signal processing enabled by polarization-multiplexed programmable THz metasurfaces. Optics Express, 2022, 30, 45221.	3.4	2
100	Brewster differential microscopy. Applied Physics Letters, 2022, 121, 231103.	3.3	2
101	Artificial Intelligence and Advanced Materials. Advanced Materials, 2023, 35, .	21.0	10
102	Research Acceleration in Selfâ€Driving Labs: Technological Roadmap toward Accelerated Materials and Molecular Discovery. Advanced Intelligent Systems, 2023, 5, .	6.1	10
103	Topological Differential Microscopy Based on the Spin–Orbit Interaction of Light in a Natural Crystal. ACS Photonics, 2022, 9, 3987-3994.	6.6	6
104	Nonlocal flat optics. Nature Photonics, 2023, 17, 36-47.	31.4	33
105	Computation at the speed of light: metamaterials for all-optical calculations and neural networks. Advanced Photonics, 2022, 4, .	11.8	24
106	Single planar photonic chip with tailored angular transmission for multiple-order analog spatial differentiator. Nature Communications, 2022, 13, .	12.8	12
107	Neural Network Design of Multilayer Metamaterial for Temporal Differentiation. Advanced Optical Materials, 2023, 11, .	7.3	4
108	Intelligent Computing: The Latest Advances, Challenges, and Future. , 2023, 2, .		26
109	Solving integral equations in free space with inverse-designed ultrathin optical metagratings. Nature Nanotechnology, 2023, 18, 365-372.	31.5	21
110	Multiple actions of time-resolved short-pulsed metamaterials. Applied Physics Letters, 2023, 122, .	3.3	10
111	A universal metasurface transfer technique for heterogeneous integration. Nanophotonics, 2023, .	6.0	2
112	Topological MIMO Optical Signal Processing. IEEE Photonics Technology Letters, 2023, 35, 199-202.	2.5	Ο

		15	0
#	ARTICLE	IF	CITATIONS
113	High-NA polarization-independent isotropic spatial differential metasurface. Photonics and Nanostructures - Fundamentals and Applications, 2023, 53, 101107.	2.0	2
115	Hydrogelâ€Scalable Nanoslide for Switchable Optical Spatialâ€Frequency Processing. Laser and Photonics Reviews, 2023, 17, .	8.7	5
117	High-fidelity analytical modeling of asymmetric CFRP composites using Reissner–Mindlin theory and hygroscopic degradation. Composites Science and Technology, 2023, 236, 109983.	7.8	3
118	Active and Programmable Metasurfaces with Semiconductor Materials and Devices. Crystals, 2023, 13, 279.	2.2	1
119	Optical differentiation in a polar coordinate system. Applied Physics Letters, 2023, 122, 091107.	3.3	1
120	Optical analog computing enabled broadband structured light. Optics Letters, 2023, 48, 2014.	3.3	3
121	Elastic wave propagation in weakly nonlinear media and metamaterials: a review of recent developments. Nonlinear Dynamics, 2023, 111, 10709-10741.	5.2	8
122	When optical microscopy meets all-optical analog computing: A brief review. Frontiers of Physics, 2023, 18, .	5.0	6
123	Nanophotonic and Optical Platforms for Deep Learning. Springer Series in Optical Sciences, 2023, , 157-172.	0.7	0
124	Phononic Bandgap Programming in Kirigami By Unique Mechanical Input Sequencing. Advanced Materials Technologies, 2023, 8, .	5.8	4
125	Quantifying the Accuracy of Microcomb-Based Photonic RF Transversal Signal Processors. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29, 1-17.	2.9	6
126	Design Strategies and Applications of Dimensional Optical Field Manipulation Based on Metasurfaces. Advanced Materials, 2023, 35, .	21.0	6
127	Tunable nonlocal metasurfaces based on graphene for analogue optical computation. Optical Materials Express, 0, , .	3.0	2
128	Programmable Shape Morphing Metasponge. Advanced Intelligent Systems, 0, , .	6.1	0
130	Allâ€Optical Multiplexed Metaâ€Differentiator for Triâ€Mode Surface Morphology Observation. Advanced Materials, 2023, 35, .	21.0	12
131	Design and analysis for the SPICE parameters of waveform-selective metasurfaces varying with the incident pulse width at a constant oscillation frequency. Scientific Reports, 2023, 13, .	3.3	2
132	4 <i>f</i> â€Less Terahertz Optical Pattern Recognition Enabled by Complex Amplitude Modulating Metasurface Through Laser Direct Writing. Advanced Optical Materials, 2023, 11, .	7.3	2
133	Single-Shot, Isotropic and Miniaturized Differential Interference Contrast (SIM-DIC) Microscopy Based on Computational Flat-Optics. , 2023, , .		0

ARTICLE IF CITATIONS # Metamaterial-Based Analog Recurrent Neural Network Toward Machine Intelligence. Physical Review 134 3.8 0 Applied, 2023, 19, . Advanced Optical Imaging Based on Metasurfaces. Advanced Optical Materials, 2024, 12, . 7.3 Extreme Diffraction Management in Phaseâ€Corrected Gradient Metasurface by Fourier Harmonic 136 8.7 8 Component Engineering. Laser and Photonics Reviews, 2023, 17, . Topological spatial differentiation via complex amplitude filtering in Fourier space. Optics Letters, 2023, 48, 3591. Mechanical metamaterials. Reports on Progress in Physics, 2023, 86, 094501. 138 20.1 5 Roadmap on spatiotemporal light fields. Journal of Optics (United Kingdom), 2023, 25, 093001. 2.2 Building Intelligence in the Mechanical Domainâ€"Harvesting the Reservoir Computing Power in 140 6.1 1 Origami to Achieve Information Perception Tasks. Advanced Intelligent Systems, 2023, 5, . Reconfigurable Intelligent Computational Surfaces: When Wave Propagation Control Meets Computing. IEEE Wireless Communications, 2023, 30, 120-128. 142 Trichannel Spin-Selective Metalenses. Nano Letters, 2023, 23, 6958-6965. 9.1 14 Deep learning aids simultaneous structure–material design discovery: a case study on designing phase 144 1.0 change material metasurfaces. Journal of Nanophotonics, 2023, 17, . Reconfigurable Spatiotemporal Optical Signal Processors. Advanced Optical Materials, 0, , . 146 0 7.3Time derivatives via interconnected waveguides. Scientific Reports, 2023, 13, . 3.3 Universal linear intensity transformations using spatially incoherent diffractive processors. Light: 148 16.6 13 Science and Applications, 2023, 12, . Solving ordinary and partial differential equations using an analog computing system based on 3.3 ultrasonic metasurfaces. Scientific Reports, 2023, 13, . Metallic and Allâ€Dielectric Metasurfaces Sustaining Displacementâ€Mediated Bound States in the 150 7.3 0 Continuum. Advanced Optical Materials, 2024, 12, . Perfect pulse filtering under simultaneous incidence at the same frequencies with waveform-selective 5.1 metasurfaces. APL Materials, 2023, 11, . Analog Programmableâ€Photonic Computation. Laser and Photonics Reviews, 2023, 17, . 1528.7 0 Mechanical metamaterials and beyond. Nature Communications, 2023, 14, . 12.8

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
154	Polarization imaging and edge detection with image-processing metasurfaces. Optica, 2023, 10, 1331.	9.3	1
155	Topologically crafted spatiotemporal vortices in acoustics. Nature Communications, 2023, 14, .	12.8	6
156	Electromagnetic Spatiotemporal Differentiation Metaâ€Devices. Laser and Photonics Reviews, 2023, 17, .	8.7	0
157	Surface topography detection based on an optical differential metasurface. Optics Letters, 2023, 48, 4801.	3.3	2
158	Topologically protected generation of spatiotemporal optical vortices with nonlocal spatial mirror symmetry breaking metasurface. Physical Review B, 2023, 108, .	3.2	1
159	Metasurface enabled broadband all optical edge detection in visible frequencies. Nature Communications, 2023, 14, .	12.8	4
160	Ultra-high NA optical image differentiator based on dielectric metasurfaces. Optics Communications, 2024, 552, 130038.	2.1	0
161	Engineering angle selectivity of extraordinary optical transmission and nonlocal spatial filtering. Journal of the Optical Society of America B: Optical Physics, 2023, 40, 2576.	2.1	0
162	High-fidelity mode scaling via topological-optimized on-chip metalens for compact photonic interconnection. , 2023, 4, 1.		2
163	Transcranial Acoustic Metamaterial Parameters Inverse Designed by Neural Networks. BME Frontiers, 2023, 4, .	4.5	1
164	Optical computation of Laplace operator using Pancharatnam-Berry lens of large focal length. Optics Communications, 2023, 549, 129935.	2.1	0
165	Visible single-pixel sensing based on a helicity-multiplexing metasurface. , 2023, , .		0
166	Wideband Polarization Insensitive Tunable Graphene-Supported Terahertz Metamaterial Absorber. IEEE Photonics Journal, 2023, 15, 1-8.	2.0	3
167	All-analog photoelectronic chip for high-speed vision tasks. Nature, 2023, 623, 48-57.	27.8	7
168	éžå±€åŸŸè¶…èj¨é¢å¾®å^†å™°çš"逆å'设计. Guangzi Xuebao/Acta Photonica Sinica, 2023, 52, 0923001.	0.3	0
169	Local resonance bandgap control in a particle-aligned magnetorheological metamaterial. Communications Materials, 2023, 4, .	6.9	1
170	Dispersion engineered metasurfaces for broadband, high-NA, high-efficiency, dual-polarization analog image processing. Nature Communications, 2023, 14, .	12.8	4
171	Dual-band waveform-selective metasurfaces for reflection suppression. Applied Physics Letters, 2023, 123, .	3.3	4

#	Article	IF	CITATIONS
172	Photonic optical accelerators: The future engine for the era of modern AI?. APL Photonics, 2023, 8, .	5.7	0
173	Shedding New Light on Phase Contrast Imaging with Nanophotonics. , 2023, , .		0
174	Complex Matrix Equation Solver Based on Computational Metasurface. Advanced Functional Materials, 0, , .	14.9	0
175	Metasurface-enhanced Newton's rings interferometer-enabled local curvature detection. Applied Physics Letters, 2023, 123, .	3.3	Ο
176	Wavelength-division multiplexing optical Ising simulator enabling fully programmable spin couplings and external magnetic fields. Science Advances, 2023, 9, .	10.3	2
177	Exploiting Waveguide Networks to Calculate Solutions of Partial Differential Equations. , 2023, , .		0
178	On the Role of Noise in Integrated Wave-Based Sensing and Computing with Dynamic Metasurface Antennas. , 2023, , .		0
179	Modelling of Interconnected Electromagnetic Waveguide Junctions Using Petri-Nets. , 2023, , .		0
180	Metalens for Accelerated Optoelectronic Edge Detection under Ambient Illumination. Nano Letters, 0, , .	9.1	0
181	Photonic signal processor based on a Kerr microcomb for real-time video image processing. , 2023, 2, .		2
182	Language-controllable programmable metasurface empowered by large language models. Nanophotonics, 2024, .	6.0	0
183	Fast Multichannel Inverse Design through Augmented Partial Factorization. ACS Photonics, 2024, 11, 378-384.	6.6	0
184	Modern computing: Vision and challenges. , 2024, 13, 100116.		0
185	3D neuromorphic photonics. , 2024, , 167-189.		0
186	Broadband noise-insulating periodic structures made of coupled Helmholtz resonators. APL Materials, 2024, 12, .	5.1	0
187	Reconfigurable application-specific photonic integrated circuit for solving partial differential equations. Nanophotonics, 2024, .	6.0	1
188	Multifractal signal generation by cascaded chaotic systems and their analog electronic realization. Nonlinear Dynamics, 2024, 112, 5707-5725.	5.2	0
189	Inverse-designed low-index-contrast structures on a silicon photonics platform for vector–matrix multiplication. Nature Photonics, 0, , .	31.4	1

		CITATION RI	CITATION REPORT		
#	Article		IF	CITATIONS	
190	Diffractive optical computing in free space. Nature Communications, 2024, 15, .		12.8	0	
191	Programming memristor arrays with arbitrarily high precision for analog computing. Sci 383, 903-910.	ience, 2024,	12.6	Ο	
192	Roadmap for Optical Metasurfaces. ACS Photonics, 2024, 11, 816-865.		6.6	0	
193	Image Processing Using Highâ€Index Dielectric Metasurfaces Based on Fano Resonance and Simulations, 0, , .	e. Advanced Theory	2.8	Ο	