Multi-Agent Deep Reinforcement Learning-Based Traje Mobile Edge Computing

IEEE Transactions on Cognitive Communications and Network 7, 73-84

DOI: 10.1109/tccn.2020.3027695

Citation Report

#	Article	IF	CITATIONS
1	Federated Multiagent Actor–Critic Learning for Age Sensitive Mobile-Edge Computing. IEEE Internet of Things Journal, 2022, 9, 1053-1067.	5.5	56
2	A Novel Genetic Trajectory Planning Algorithm With Variable Population Size for Multi-UAV-Assisted Mobile Edge Computing System. IEEE Access, 2021, 9, 125569-125579.	2.6	21
3	Energy Efficient UAV-Enabled Mobile Edge Computing for IoT Devices: A Review. IEEE Access, 2021, 9, 127779-127798.	2.6	42
4	Joint Communication Scheduling and Velocity Control in Multi-UAV-Assisted Sensor Networks: A Deep Reinforcement Learning Approach. IEEE Transactions on Vehicular Technology, 2021, 70, 10986-10998.	3.9	17
5	Distributed Machine Learning for Wireless Communication Networks: Techniques, Architectures, and Applications. IEEE Communications Surveys and Tutorials, 2021, 23, 1458-1493.	24.8	53
6	Artificial Intelligence for UAV-Enabled Wireless Networks: A Survey. IEEE Open Journal of the Communications Society, 2021, 2, 1015-1040.	4.4	69
7	Task Offloading and Trajectory Control for UAV-Assisted Mobile Edge Computing Using Deep Reinforcement Learning. IEEE Access, 2021, 9, 53708-53719.	2.6	53
8	Enabling Efficient Scheduling in Large-Scale UAV-Assisted Mobile-Edge Computing via Hierarchical Reinforcement Learning. IEEE Internet of Things Journal, 2022, 9, 7095-7109.	5.5	37
9	Delay-Sensitive Energy-Efficient UAV Crowdsensing by Deep Reinforcement Learning. IEEE Transactions on Mobile Computing, 2023, 22, 2038-2052.	3.9	14
10	A Reinforcement Learning Routing Protocol for UAV Aided Public Safety Networks. Sensors, 2021, 21, 4121.	2.1	15
11	An Edge Federated MARL Approach for Timeliness Maintenance in MEC Collaboration. , 2021, , .		7
12	A Quadratic Programming Based Neural Dynamic Controller and Its Application to UAVs for Time-Varying Tasks. IEEE Transactions on Vehicular Technology, 2021, 70, 6415-6426.	3.9	8
13	UAV-to-Device Underlay Communications: Age of Information Minimization by Multi-Agent Deep Reinforcement Learning. IEEE Transactions on Communications, 2021, 69, 4461-4475.	4.9	37
14	Decentralized Offloading Strategies Based on Reinforcement Learning for Multi-Access Edge Computing. Information (Switzerland), 2021, 12, 343.	1.7	1
15	Building a Connected Communication Network for UAV Clusters Using DE-MADDPG. Symmetry, 2021, 13, 1537.	1.1	4
16	Multi-UAV Assisted Offloading Optimization: A Game Combined Reinforcement Learning Approach. IEEE Communications Letters, 2021, 25, 2629-2633.	2.5	3
17	ViTT: Vision Transformer Tracker. Sensors, 2021, 21, 5608.	2.1	8
18	A Survey of Wireless Networks for Future Aerial Communications (FACOM). IEEE Communications Surveys and Tutorials, 2021, 23, 2833-2884.	24.8	48

#	Article	IF	Citations
19	Dynamic UAV Deployment for Differentiated Services: A Multi-Agent Imitation Learning Based Approach. IEEE Transactions on Mobile Computing, 2023, 22, 2131-2146.	3.9	53
20	On Joint Offloading and Resource Allocation: A Double Deep Q-Network Approach. IEEE Transactions on Cognitive Communications and Networking, 2021, 7, 1126-1141.	4.9	16
21	Energy Efficient Resource Allocation and Trajectory Optimization in UAV-Assisted Mobile Edge Computing System. , 2021, , .		4
22	Evolutionary Coverage Optimization for a Self-Organizing UAV-Based Wireless Communication System. IEEE Access, 2021, 9, 145066-145082.	2.6	5
23	Deployable Networks for Public Safety in 5G and Beyond: A Coverage and Interference Study. , 2021, , .		3
24	An evolutionary trajectory planning algorithm for multi-UAV-assisted MEC system. Soft Computing, 2022, 26, 7479-7492.	2.1	19
25	Deep Reinforcement Learning for Flocking Motion of Multi-UAV Systems: Learn From a Digital Twin. IEEE Internet of Things Journal, 2022, 9, 11141-11153.	5.5	23
26	Joint Optimization of USVs Communication and Computation Resource in IRS-Aided Wireless Inland Ship MEC Networks. IEEE Transactions on Green Communications and Networking, 2022, 6, 1023-1036.	3.5	15
27	Deep Reinforcement Learning Based Latency Minimization for Mobile Edge Computing With Virtualization in Maritime UAV Communication Network. IEEE Transactions on Vehicular Technology, 2022, 71, 4225-4236.	3.9	51
28	Joint resource management for mobility supported federated learning in Internet of Vehicles. Future Generation Computer Systems, 2022, 129, 199-211.	4.9	15
29	Cooperative Task Offloading in UAV Swarm-based Edge Computing. , 2021, , .		2
30	Analyzing vertical and horizontal offloading in federated cloud and edge computing systems. Telecommunication Systems, 2022, 79, 447-459.	1.6	3
31	Survey on computation offloading in UAV-Enabled mobile edge computing. Journal of Network and Computer Applications, 2022, 201, 103341.	5.8	74
32	Single- and Multiagent Actor–Critic for Initial UAV's Deployment and 3-D Trajectory Design. IEEE Internet of Things Journal, 2022, 9, 15372-15389.	5.5	8
33	UAV-Enabled Mobile Edge-Computing for IoT Based on AI: A Comprehensive Review. Drones, 2021, 5, 148.	2.7	53
34	Applications of Multi-Agent Reinforcement Learning in Future Internet: A Comprehensive Survey. IEEE Communications Surveys and Tutorials, 2022, 24, 1240-1279.	24.8	37
35	Intelligent Offloading and Resource Allocation in Heterogeneous Aerial Access IoT Networks. IEEE Internet of Things Journal, 2023, 10, 5704-5718.	5.5	26
36	A Multi-Agent Collaborative Environment Learning Method for UAV Deployment and Resource Allocation. IEEE Transactions on Signal and Information Processing Over Networks, 2022, 8, 120-130.	1.6	18

#	Article	IF	CITATIONS
37	Multi-Agent Deep Reinforcement Learning for Task Offloading in UAV-Assisted Mobile Edge Computing. IEEE Transactions on Wireless Communications, 2022, 21, 6949-6960.	6.1	71
38	Artificial Intelligence Approaches for UAV Navigation: Recent Advances and Future Challenges. IEEE Access, 2022, 10, 26320-26339.	2.6	32
39	Deep Reinforcement Learning-Based Dynamic Offloading Management in UAV-Assisted MEC System. Wireless Communications and Mobile Computing, 2022, 2022, 1-13.	0.8	2
40	Landing System Development Based on Inverse Homography Range Camera Fusion (IHRCF). Sensors, 2022, 22, 1870.	2.1	2
41	UAV swarm path planning with reinforcement learning for field prospecting. Applied Intelligence, 2022, 52, 14101-14118.	3.3	14
42	Fast and computationally efficient generative adversarial network algorithm for unmanned aerial vehicle–based network coverage optimization. International Journal of Distributed Sensor Networks, 2022, 18, 155014772210755.	1.3	2
43	UAV-assisted cooperative offloading energy efficiency system for mobile edge computing. Digital Communications and Networks, 2022, , .	2.7	6
44	UAV Assisted Cellular Networks With Renewable Energy Charging Infrastructure: A Reinforcement Learning Approach. , 2021, , .		0
45	MEâ€MADDPG: An efficient learningâ€based motion planning method for multiple agents in complex environments. International Journal of Intelligent Systems, 2022, 37, 2393-2427.	3.3	12
46	Game Combined Multi-Agent Reinforcement Learning Approach for UAV Assisted Offloading. IEEE Transactions on Vehicular Technology, 2021, 70, 12888-12901.	3.9	29
48	Deep Reinforcement Learning-Based Resource Management for Flexible Mobile Edge Computing: Architectures, Applications, and Research Issues. IEEE Vehicular Technology Magazine, 2022, 17, 85-93.	2.8	3
49	Unmanned Aerial Vehicle Swarm-Enabled Edge Computing: Potentials, Promising Technologies, and Challenges. IEEE Wireless Communications, 2022, 29, 78-85.	6.6	32
50	Trajectory Design and Resource Allocation for Multi-UAV Networks: Deep Reinforcement Learning Approaches. IEEE Transactions on Network Science and Engineering, 2023, 10, 2940-2951.	4.1	7
51	Mobile Robot Path Planning Method Based on Deep Reinforcement Learning Algorithm. Journal of Circuits, Systems and Computers, 2022, 31, .	1.0	5
52	DeepMECagent: multi-agent computing resource allocation for UAV-assisted mobile edge computing in distributed IoT system. Applied Intelligence, 2023, 53, 1180-1191.	3.3	11
53	DMADRL: A Distributed Multi-agent Deep Reinforcement Learning Algorithm for Cognitive Offloading in Dynamic MEC Networks. Neural Processing Letters, 2022, 54, 4341-4373.	2.0	3
54	A comprehensive survey on aerial mobile edge computing: Challenges, state-of-the-art, and future directions. Computer Communications, 2022, 191, 233-256.	3.1	14
55	Distributed Federated Deep Reinforcement Learning Based Trajectory Optimization for Air-Ground Cooperative Emergency Networks. IEEE Transactions on Vehicular Technology, 2022, 71, 9107-9112.	3.9	10

#	Article	IF	CITATIONS
56	Skeletonâ€level control for multiâ€agent simulation through deep reinforcement learning. Computer Animation and Virtual Worlds, 0, , .	0.7	0
57	Secure Transmission for Multi-UAV-Assisted Mobile Edge Computing Based on Reinforcement Learning. IEEE Transactions on Network Science and Engineering, 2023, 10, 1270-1282.	4.1	38
58	Multi-IRS and Multi-UAV-Assisted MEC System for 5G/6G Networks: Efficient Joint Trajectory Optimization and Passive Beamforming Framework. IEEE Transactions on Intelligent Transportation Systems, 2023, 24, 4553-4564.	4.7	24
59	Reinforcement Learning-Empowered Mobile Edge Computing for 6G Edge Intelligence. IEEE Access, 2022, 10, 65156-65192.	2.6	24
60	Deep-Reinforcement-Learning-Based Drone Base Station Deployment for Wireless Communication Services. IEEE Internet of Things Journal, 2022, 9, 21899-21915.	5.5	8
61	Trajectory and Communication Design for Cache- Enabled UAVs in Cellular Networks: A Deep Reinforcement Learning Approach. IEEE Transactions on Mobile Computing, 2023, 22, 6190-6204.	3.9	7
62	A Load-Balanced and Energy-Efficient Navigation Scheme for UAV-Mounted Mobile Edge Computing. IEEE Transactions on Network Science and Engineering, 2022, 9, 3659-3674.	4.1	15
63	Resource Allocation in UAV-Assisted Networks: A Clustering-Aided Reinforcement Learning Approach. IEEE Transactions on Vehicular Technology, 2022, 71, 12088-12103.	3.9	10
64	Unmanned aerial vehicles (UAVs) for disaster management. , 2022, , 159-188.		1
65	Collaboration in the Sky: A Distributed Framework for Task Offloading and Resource Allocation in Multi-Access Edge Computing. IEEE Internet of Things Journal, 2022, 9, 24221-24235.	5.5	12
66	Computing in the Sky: A Survey on Intelligent Ubiquitous Computing for UAV-Assisted 6G Networks and Industry 4.0/5.0. Drones, 2022, 6, 177.	2.7	54
67	Reliable Backhauling in Aerial Communication Networks Against UAV Failures: A Deep Reinforcement Learning Approach. IEEE Transactions on Network and Service Management, 2022, 19, 2798-2811.	3.2	7
68	Decentralized Trajectory and Power Control Based on Multi-Agent Deep Reinforcement Learning in UAV Networks. , 2022, , .		4
69	Dynamic Air-Ground Collaboration for Multi-Access Edge Computing. , 2022, , .		4
70	Switching-aware multi-agent deep reinforcement learning for target interception. Applied Intelligence, 2023, 53, 7876-7891.	3.3	2
71	A cloud edge computing method for economic dispatch of active distribution network with multi-microgrids. Electric Power Systems Research, 2023, 214, 108806.	2.1	7
72	Pervasive AI for IoT Applications: A Survey on Resource-Efficient Distributed Artificial Intelligence. IEEE Communications Surveys and Tutorials, 2022, 24, 2366-2418.	24.8	29
73	Evolutionary Multi-Objective Reinforcement Learning Based Trajectory Control and Task Offloading in UAV-Assisted Mobile Edge Computing. IEEE Transactions on Mobile Computing, 2022, , 1-18.	3.9	21

	Сітатіо	n Report	
#	Article	IF	CITATIONS
74	Drone Swarm Path Planning for Mobile Edge Computing in Industrial Internet of Things. IEEE Transactions on Industrial Informatics, 2023, 19, 6836-6848.	7.2	14
75	Unmanned Aerial Vehicle Communications for Civil Applications: A Review. IEEE Access, 2022, 10, 102492-102531.	2.6	22
76	Optimization of Green Mobile Cloud Computing. , 2022, , 21-46.		0
77	Joint Trajectory and Passive Beamforming Design for Intelligent Reflecting Surface-Aided UAV Communications: A Deep Reinforcement Learning Approach. IEEE Transactions on Mobile Computing, 2022, , 1-11.	3.9	22
78	AI-Enabled UAV Communications: Challenges and Future Directions. IEEE Access, 2022, 10, 92048-92066.	2.6	20
79	Distributed Optimization With Improved Dynamic Performance for Multiagent Systems. IEEE Access, 2022, 10, 78002-78010.	2.6	0
80	Hierarchical Multi-Agent Deep Reinforcement Learning for Energy-Efficient Hybrid Computation Offloading. IEEE Transactions on Vehicular Technology, 2023, 72, 986-1001.	3.9	4
81	Distributed Artificial Intelligence Enabled Aerial-Ground Networks: Architecture, Technologies and Challenges. IEEE Access, 2022, 10, 105447-105457.	2.6	5
82	Joint Trajectory and Energy Efficiency Optimization for Multi-UAV Assisted Offloading. , 2022, , .		1
83	Decentralized Computation Offloading with Cooperative UAVs: Multi-Agent Deep Reinforcement Learning Perspective. IEEE Wireless Communications, 2022, 29, 24-31.	6.6	6
84	Analysis and Design of Distributed Data Cluster System. , 2022, , .		0
85	Computation Offloading for Rechargeable Users in Space-Air-Ground Networks. IEEE Transactions on Vehicular Technology, 2023, 72, 3805-3818.	3.9	6
86	A <i>Q</i> -Learning Approach for Real-Time NOMA Scheduling of Medical Data in UAV-Aided WBANs. IEEE Access, 2022, 10, 115074-115091.	2.6	3
87	Federated Deep Reinforcement Learning for Joint AeBSs Deployment and Computation Offloading in Aerial Edge Computing Network. Electronics (Switzerland), 2022, 11, 3641.	1.8	1
88	Path-Planning for Unmanned Aerial Vehicles with Environment Complexity Considerations: A Survey. ACM Computing Surveys, 2023, 55, 1-39.	16.1	24
89	Reinforcement Learning-Based Physical Cross-Layer Security and Privacy in 6G. IEEE Communications Surveys and Tutorials, 2023, 25, 425-466.	24.8	21
90	Learning and Batch-Processing Based Coded Computation With Mobility Awareness for Networked Airborne Computing. IEEE Transactions on Vehicular Technology, 2023, 72, 6503-6517.	3.9	0
91	Joint Optimization ofÂTrajectory andÂFrequency inÂEnergy Constrained Multi-UAV Assisted MEC System. Lecture Notes in Computer Science, 2022, , 422-429.	1.0	0

#	Article	IF	CITATIONS
92	Unmanned-Aerial-Vehicle-Assisted Wireless Networks: Advancements, Challenges, and Solutions. IEEE Internet of Things Journal, 2023, 10, 4117-4147.	5.5	9
93	Deep Reinforcement Learning Based Resource Allocation in Multi-UAV-Aided MEC Networks. IEEE Transactions on Communications, 2023, 71, 296-309.	4.9	13
94	Multihop Task Routing in UAV-Assisted Mobile-Edge Computing IoT Networks With Intelligent Reflective Surfaces. IEEE Internet of Things Journal, 2023, 10, 7174-7188.	5.5	5
95	Delay-Aware Cooperative Task Offloading for Multi-UAV Enabled Edge-Cloud Computing. IEEE Transactions on Mobile Computing, 2022, , 1-16.	3.9	0
96	Expert System-Based Multiagent Deep Deterministic Policy Gradient for Swarm Robot Decision Making. IEEE Transactions on Cybernetics, 2024, 54, 1614-1624.	6.2	4
97	Adaptive Data Collection and Offloading in Multi-UAV-Assisted Maritime IoT Systems: A Deep Reinforcement Learning Approach. Remote Sensing, 2023, 15, 292.	1.8	7
98	UAV Formation Trajectory Planning Algorithms: A Review. Drones, 2023, 7, 62.	2.7	22
99	Twin attentive deep reinforcement learning for multi-agent defensive convoy. International Journal of Machine Learning and Cybernetics, 0, , .	2.3	Ο
100	Computation Offloading and Energy Harvesting Schemes for Sum Rate Maximization in Space-Air-Ground Networks. , 2022, , .		2
101	Energy Efficient Computation Offloading in Aerial Edge Networks With Multi-Agent Cooperation. IEEE Transactions on Wireless Communications, 2023, 22, 5725-5739.	6.1	10
102	Edge Learning for B5G Networks With Distributed Signal Processing: Semantic Communication, Edge Computing, and Wireless Sensing. IEEE Journal on Selected Topics in Signal Processing, 2023, 17, 9-39.	7.3	96
103	Fairness-Based 3-D Multi-UAV Trajectory Optimization in Multi-UAV-Assisted MEC System. IEEE Internet of Things Journal, 2023, 10, 11383-11395.	5.5	4
104	Joint UAV deployment, SF placement, and collaborative task scheduling in heterogeneous multiâ€UAVâ€empowered edge intelligence. IET Communications, 0, , .	1.5	1
105	Hybrid UAV-Enabled Secure Offloading via Deep Reinforcement Learning. IEEE Wireless Communications Letters, 2023, 12, 972-976.	3.2	2
106	Aerial Edge Computing: A Survey. IEEE Internet of Things Journal, 2023, 10, 14357-14374.	5.5	4
107	Multi-agent DRL for joint completion delay and energy consumption with queuing theory in MEC-based IIoT. Journal of Parallel and Distributed Computing, 2023, 176, 80-94.	2.7	16
108	Task offloading paradigm in mobile edge computing-current issues, adopted approaches, and future directions. Journal of Network and Computer Applications, 2023, 212, 103568.	5.8	22
109	Joint Trajectory Planning, Time and Power Allocation to Maximize Throughput in UAV Network. Drones, 2023, 7, 68.	2.7	0

CITA	TION	DEDODT
CITA	I I U N	REPORT

#	Article	IF	CITATIONS
110	Offloading Using Traditional Optimization and Machine Learning in Federated Cloud–Edge–Fog Systems: A Survey. IEEE Communications Surveys and Tutorials, 2023, 25, 1199-1226.	24.8	28
111	MAESTRO-X: Distributed Orchestration of Rotary-Wing UAV-Relay Swarms. IEEE Transactions on Cognitive Communications and Networking, 2023, 9, 794-810.	4.9	1
112	Multiscale Adaptive Scheduling and Path-Planning for Power-Constrained UAV-Relays via SMDPs. , 2022, , .		2
113	Joint UAV Trajectory Planning, DAG Task Scheduling, and Service Function Deployment Based on DRL in UAV-Empowered Edge Computing. IEEE Internet of Things Journal, 2023, 10, 12826-12838.	5.5	6
114	A Review on Al-Driven Aerial Access Networks: Challenges and Open Research Issues. , 2023, , .		0
115	Blockchain-Empowered Resource Allocation in Multi-UAV-Enabled 5G-RAN: A Multi-Agent Deep Reinforcement Learning Approach. IEEE Transactions on Cognitive Communications and Networking, 2023, 9, 991-1011.	4.9	4
116	Joint Computing Offloading and Trajectory for Multi-UAV Enabled MEC Systems. , 2022, , .		3
117	Joint Trajectory Planning, Application Placement, and Energy Renewal for UAV-Assisted MEC: A Triple-Learner-Based Approach. IEEE Internet of Things Journal, 2023, 10, 13622-13636.	5.5	4
118	Scalable and Cooperative Deep Reinforcement Learning Approaches for Multi-UAV Systems: A Systematic Review. Drones, 2023, 7, 236.	2.7	9
119	A Controllable Agent by Subgoals in Path Planning Using Goal-Conditioned Reinforcement Learning. IEEE Access, 2023, 11, 33812-33825.	2.6	2
120	Research on Wargame Decision-Making Method Based on Multi-Agent Deep Deterministic Policy Gradient. Applied Sciences (Switzerland), 2023, 13, 4569.	1.3	0
121	Joint Resource Allocation and Trajectory Optimization in UAV-Enabled Wirelessly Powered MEC for Large Area. IEEE Internet of Things Journal, 2023, 10, 15705-15722.	5.5	2
122	Joint Optimization of Service Fairness and Energy Consumption for 3D Trajectory Planning in Multiple Solar-Powered UAV Systems. Applied Sciences (Switzerland), 2023, 13, 5136.	1.3	0
124	A Review of Research on the Application of Deep Reinforcement Learning in Unmanned Aerial Vehicle Resource Allocation and Trajectory Planning. , 2022, , .		3
126	DRL-based Joint Optimization for Energy Efficiency Maximization in DAV-NOMA Networks. , 2023, , .		0
136	UAV-based Networked Airborne Computing Simulator and Testbed Design and Implementation. , 2023, , .		0
143	A review of computing offloading and caching in edge computing based on reinforcement learning. , 2023, , .		0
144	biLSCCS: modular dynamical on-road objects trajectory prediction approach. , 2023, , .		0

#	Article	IF	CITATIONS
160	Personalized Federated Deep Reinforcement Learning-based Trajectory Optimization for Multi-UAV Assisted Edge Computing. , 2023, , .		2
165	Computation Offloading Service in UAV-Assisted Mobile Edge Computing: A Soft Actor-Critic Approach. , 2023, , .		0
166	Task Offloading for UAV-Assisted of Collaborative Mobile Edge Computing Network Based on Deep Reinforcement Learning. Mechanisms and Machine Science, 2023, , 219-232.	0.3	0
171	A Joint Trajectory and Computation Offloading Scheme for UAV-MEC Networks via Multi-Agent Deep Reinforcement Learning. , 2023, , .		0
173	Multi-agent Cooperative Computing Resource Scheduling Algorithm forÂPeriodic Task Scenarios. Lecture Notes in Computer Science, 2024, , 76-97.	1.0	0
178	A Dynamic Approach for Handling UAV in Crowded Environment Using Deep Q-Networks. , 2023, , .		0
179	Robust Multi-Agent Coverage Path Planning for Unmanned Airial Vehicles (UAVs) in Complex 3D Environments with Deep Reinforcement Learning*. , 2023, , .		0
181	Reinforcement Learning with UAV Assistance for Optimized Computation Offloading in Mobile Edge Computing. , 2023, , .		0
186	UAV-Based Warehouse Management Using Multi-Agent RL. Advances in Computational Intelligence and Robotics Book Series, 2024, , 263-306.	0.4	0
187	The Role of Machine Learning in UAV-Assisted Communication. Advances in Computational Intelligence and Robotics Book Series, 2024, , 1-26.	0.4	0
188	Network topology and bandwidth optimization for communication enhancement of multi-UAV system. , 2023, , .		0
192	Intelligent UAV Charging Station Deployment and Path Planning in Smart City. , 2023, , .		0
194	Task Offloading inÂUAV-to-Cell MEC Networks: Cell Clustering andÂPath Planning. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2024, , 3-19.	0.2	0