A Collision Resolution Protocol for Random Access in M

IEEE Journal on Selected Areas in Communications 39, 686-699 DOI: 10.1109/jsac.2020.3018798

Citation Report

#	Article	IF	CITATIONS
1	A GCICA Grant-Free Random Access Scheme for M2M Communications in Crowded Massive MIMO Systems. IEEE Internet of Things Journal, 2022, 9, 6032-6046.	8.7	21
2	UAV-Aided Backscatter Communications: Performance Analysis and Trajectory Optimization. IEEE Journal on Selected Areas in Communications, 2021, 39, 3129-3143.	14.0	21
3	Deep Learning-Based Cellular Random Access Framework. IEEE Transactions on Wireless Communications, 2021, 20, 7503-7518.	9.2	9
4	Robust Transmission Design for Intelligent Reflecting Surface Aided Secure Communications. , 2020, , .		4
5	An Online Zero-Forcing Precoder for Weighted Sum-Rate Maximization in Green CoMP Systems. IEEE Transactions on Wireless Communications, 2022, 21, 7566-7581.	9.2	4
6	5G in manufacturing: a literature review and future research. International Journal of Advanced Manufacturing Technology, 0, , 1.	3.0	12
7	An Online Throughput Maximization Algorithm for Green Coordinated Multi-Point Systems. , 2022, , .		1
8	Optimal Probabilistic Repetition for Massive MIMO-Aided Grant-Free Short-Packet Transmissions. IEEE Transactions on Vehicular Technology, 2022, 71, 12407-12412.	6.3	2
9	Deep Neural Network-Aided Cross-Slot User Equipment Scheduling for Grant-Free Random Access. IEEE Internet of Things Journal, 2022, , 1-1.	8.7	0
10	Code-Domain Collision Resolution Grant-Free Random Access for Massive Access in IoT. IEEE Transactions on Wireless Communications, 2023, 22, 4611-4624.	9.2	1
11	On The Grant-Free Random Access in Multicell Massive MIMO Systems: Spatiotemporal Modeling and Backoff Scheme Optimization. IEEE Internet of Things Journal, 2023, , 1-1.	8.7	0
12	An Efficient NB-IoT Compatible GF-NOMA PHY Mechanism for mMTC. IEEE Internet of Things Journal, 2023, 10, 17949-17963.	8.7	3
13	Composite Preambles Based on Differential Phase Rotations for Grant-free Random Access Systems. IEEE Internet of Things Journal, 2023, , 1-1.	8.7	0
14	Low-Correlation Superimposed Pilot Grant-Free Massive Access for Satellite Internet of Things. IEEE Transactions on Communications, 2023, 71, 7087-7101.	7.8	0
15	Low complexity channel tracking algorithms for coordinated and uncoordinated pilot access over high-rate internet of things. Internet of Things (Netherlands), 2023, 24, 100946.	7.7	0