Electrochemical Oxidation Induced Selective C–C Bor

Chemical Reviews 121, 485-505

DOI: 10.1021/acs.chemrev.0c00335

Citation Report

#	Article	IF	CITATIONS
1	Recent Advances on Synthetic Methodology Merging C–H Functionalization and C–C Cleavage. Molecules, 2020, 25, 5900.	1.7	17
2	Ammonium Persulfate Promotes Trifluoromethylation of Quinoxalin-2(1 <i>H</i>)-ones. Chinese Journal of Organic Chemistry, 2021, 41, 3285.	0.6	1
3	Organocatalytic electrochemical amination of benzylic C–H bonds. Organic Chemistry Frontiers, 2021, 8, 4700-4705.	2.3	33
4	Electrochemical sulfonylation of enamides with sodium sulfinates to access Î ² -amidovinyl sulfones. Organic and Biomolecular Chemistry, 2021, 19, 8295-8300.	1.5	13
5	Recent advances in electrochemically driven radical fluorination and fluoroalkylation. Organic Chemistry Frontiers, 2021, 8, 2786-2798.	2.3	69
6	Recent progress on electrochemical synthesis involving carboxylic acids. Organic and Biomolecular Chemistry, 2021, 19, 5501-5520.	1.5	37
7	Organic synthesis <i>via</i> Kolbe and related non-Kolbe electrolysis: an enabling electro-strategy. Reaction Chemistry and Engineering, 2021, 6, 1342-1366.	1.9	13
8	Solvent-controlled photocatalytic divergent cyclization of alkynyl aldehydes: access to cyclopentenones and dihydropyranols. Chemical Science, 2021, 12, 11420-11426.	3.7	11
9	Electrochemical Synthesis of Benzimidazoles via Dehydrogenative Cyclization of Amidines. ChemSusChem, 2021, 14, 1692-1695.	3.6	18
10	Electrochemically Driven Radical Reactions: From Direct Electrolysis to Molecular Catalysis. Chemical Record, 2021, 21, 2306-2319.	2.9	57
11	Electrochemical generation of nitrogen-centered radicals for organic synthesis. Green Synthesis and Catalysis, 2021, 2, 165-178.	3.7	130
12	Electrochemically Enabled Oneâ€Pot Multistep Synthesis of C19 Androgen Steroids. Chemistry - A European Journal, 2021, 27, 6044-6049.	1.7	5
13	Oxidative α-C–C Bond Cleavage of 2° and 3° Alcohols to Aromatic Acids with O ₂ at Room Temperature via Iron Photocatalysis. Organic Letters, 2021, 23, 2915-2920.	2.4	27
14	Electrochemical Selective Oxidative Synthesis of Diversified Sulfur Heterocycles from <scp>βâ€Ketothioamides</scp> . Chinese Journal of Chemistry, 2021, 39, 1831-1837.	2.6	16
15	Recent advances in the radical-mediated decyanative alkylation of cyano(hetero)arene. Green Synthesis and Catalysis, 2021, 2, 145-155.	3.7	63
16	Ynonylation of Acyl Radicals by Electroinduced Homolysis of 4-Acyl-1,4-dihydropyridines. Organic Letters, 2021, 23, 4960-4965.	2.4	20
17	Progress and Perspectives in Photo―and Electrochemicalâ€Oxidation of Biomass for Sustainable Chemicals and Hydrogen Production. Advanced Energy Materials, 2021, 11, 2101180.	10.2	200
18	Visibleâ€Lightâ€Mediated Aerobic Oxidative C(<i>sp</i> ^{<i>3</i>})â°C(<i>sp</i> ^{<i>3</i>}) Bond Cleavage of Morpholine Derivatives Using 4CzIPN as a Photocatalyst. Advanced Synthesis and Catalysis. 2021. 363. 3803-3811	2.1	9

#	Article	IF	CITATIONS
19	Directing Group Enables Electrochemical Selectively <i>Meta</i> Bromination of Pyridines under Mild Conditions. Journal of Organic Chemistry, 2021, 86, 16144-16150.	1.7	19
20	C–H Amination via Electrophotocatalytic Ritter-type Reaction. Journal of the American Chemical Society, 2021, 143, 8597-8602.	6.6	100
21	Rhodium(III)-Catalyzed Oxidative Cyclization of Oxazolines with Cyclopropanols: Synthesis of Isoindolinones. Organic Letters, 2021, 23, 5927-5931.	2.4	19
22	Electrochemical Oxidative C3 Acyloxylation of Imidazo[1,2- <i>a</i>]pyridines with Hydrogen Evolution. Organic Letters, 2021, 23, 5932-5936.	2.4	21
23	Electrochemical Scalable Sulfoxidation of Sulfides with Molecular Oxygen and Water. European Journal of Organic Chemistry, 2021, 2021, 3743-3747.	1.2	14
24	Pd-Catalyzed Ring-Closing/Ring-Opening Cross Coupling Reactions: Enantioselective Diarylation of Unactivated Olefins. ACS Catalysis, 2021, 11, 8942-8947.	5.5	23
25	Site-Selective Electrochemical C–H Cyanation of Indoles. Organic Letters, 2021, 23, 5983-5987.	2.4	20
26	Zn-Nx sites on N-doped carbon for aerobic oxidative cleavage and esterification of C(CO)-C bonds. Nature Communications, 2021, 12, 4823.	5.8	76
27	Electrochemical Approaches to Carbonylative Coupling Reactions. Chemistry - an Asian Journal, 2021, 16, 2830-2841.	1.7	15
28	Electrochemical Tandem Olefination and Hydrogenation Reaction with Ammonia. Journal of Organic Chemistry, 2021, 86, 16016-16025.	1.7	5
29	Iron-Catalyzed Thiolation and Selenylation of Cycloalkyl Hydroperoxides via C–C Bond Cleavage. Journal of Organic Chemistry, 2021, 86, 11987-11997.	1.7	11
30	Electrophotochemical Ring-Opening Bromination of <i>tert</i> Cycloalkanols. Journal of Organic Chemistry, 2021, 86, 16177-16186.	1.7	15
31	Hybrid radical-polar pathway for excision of ethylene from 2-oxoglutarate by an iron oxygenase. Science, 2021, 373, 1489-1493.	6.0	11
32	Sulfoxide and Sulfone Synthesis via Electrochemical Oxidation of Sulfides. Journal of Organic Chemistry, 2021, 86, 13790-13799.	1.7	23
33	Electro-Oxidative C–N Bond Formation through Azolation of Indole Derivatives: An Access to 3-Substituent-2-(Azol-1-yl)indoles. Journal of Organic Chemistry, 2021, 86, 16059-16067.	1.7	12
34	Selective Degradation of Styreneâ€Related Plastics Catalyzed by Iron under Visible Light**. ChemSusChem, 2021, 14, 5049-5056.	3.6	67
35	Delivering 2-Aryl Benzoxazoles through Metal-Free and Redox-Neutral De-CF ₃ Process. Journal of Organic Chemistry, 2021, 86, 13548-13558.	1.7	5
36	A LADH-like Zn-MOF as an efficient bifunctional catalyst for cyanosilylation of aldehydes and photocatalytic oxidative carbon–carbon coupling reaction. Journal of Solid State Chemistry, 2021, 301, 122337.	1.4	8

#	Article	IF	CITATIONS
37	Synthesis of 1,2,4-Triazoles via the Electrochemical Oxidative [3+2] Annulation. Chinese Journal of Organic Chemistry, 2021, 41, 2476.	0.6	3
38	Discovery of a tetraarylhydrazine catalyst for electrocatalytic synthesis of imidazo-fused N-heteroaromatic compounds. Organic and Biomolecular Chemistry, 2021, 19, 8789-8793.	1.5	8
39	Flexible on-site halogenation paired with hydrogenation using halide electrolysis. Green Chemistry, 2021, 23, 2037-2043.	4.6	10
40	Electrochemical Oxidated-Iodide Promoted α-H Aryl(alkyl)selenation of Acetone for the Preparation of α-Aryl(alkyl)selenoacetones. Chinese Journal of Organic Chemistry, 2021, 41, 3726.	0.6	1
41	Transition metal-catalyzed arylation of unstrained C–C single bonds. Organic and Biomolecular Chemistry, 2021, 19, 9809-9828.	1.5	10
42	Electrochemically enabled rhodium-catalyzed [4 + 2] annulations of arenes with alkynes. Green Chemistry, 2021, 23, 9515-9522.	4.6	16
43	Electrochemically selective double C(sp ²)–X (X = S/Se, N) bond formation of isocyanides. Chemical Science, 2021, 12, 14121-14125.	3.7	12
44	Phosphine/Photoredox Catalyzed Anti-Markovnikov Hydroamination of Olefins with Primary Sulfonamides via α-Scission from Phosphoranyl Radicals. Journal of the American Chemical Society, 2021, 143, 18331-18338.	6.6	47
45	Electrocatalytic C(sp ³)–H/C(sp)–H cross-coupling in continuous flow through TEMPO/copper relay catalysis. Beilstein Journal of Organic Chemistry, 2021, 17, 2650-2656.	1.3	6
46	Carbon–carbon bond activation by B(OMe)3/B2pin2-mediated fragmentation borylation. Chemical Science, 2021, 12, 15104-15109.	3.7	1
47	Practical Synthesis of Halogenated <i>N</i> â€Heterocycles via Electrochemical Anodic Oxidation of Unactivated Alkenes. European Journal of Organic Chemistry, 2021, 2021, 5831-5834.	1.2	11
48	Electrochemical oxidative cyclization of <i>N</i> -allylcarboxamides: efficient synthesis of halogenated oxazolines. New Journal of Chemistry, 2022, 46, 663-667.	1.4	10
49	Olefination via Cu-Mediated Dehydroacylation of Unstrained Ketones. Journal of the American Chemical Society, 2021, 143, 20042-20048.	6.6	28
50	Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chemical Reviews, 2022, 122, 2487-2649.	23.0	210
51	Time-Resolved EPR Revealed the Formation, Structure, and Reactivity of N <i>-</i> Centered Radicals in an Electrochemical C(sp ³)–H Arylation Reaction. Journal of the American Chemical Society, 2021, 143, 20863-20872.	6.6	64
52	Photoelectrochemical Decarboxylative C–H Alkylation of Quinoxalin-2(1 <i>H</i>)-ones. ACS Sustainable Chemistry and Engineering, 2021, 9, 16820-16828.	3.2	14
53	Electrochemical intramolecular haloheterocyclization reactions using 1,2-dihaloethanes as halogenating reagents. Tetrahedron Letters, 2022, 89, 153602.	0.7	5
54	Electrochemical oxidation-induced benzyl C H carbonylation for the synthesis of aromatic α-diketones. Tetrahedron Letters, 2022, 89, 153593.	0.7	0

#	Article	IF	CITATIONS
55	Ag-Catalyzed Insertion of Alkynyl Carbenes into C–C Bonds of β-Ketocarbonyls: A Formal C(sp ²) Insertion. Organic Letters, 2022, 24, 631-636.	2.4	16
56	Radical Addition of 4-Hydroxyquinazolines and Alkylation of Quinones by the Electro-Induced Homolysis of 4-Alkyl-1,4-diÂhydropyridines. Synthesis, 2022, 54, 2696-2706.	1.2	1
57	Electroreductive synthesis of polyfunctionalized pyridin-2-ones from acetoacetanilides and carbon disulfide with oxygen evolution. Organic and Biomolecular Chemistry, 2022, 20, 1013-1018.	1.5	11
58	Electrochemical fluorosulfonylation of alkenes to access vicinal fluorinated sulfones derivatives. Tetrahedron, 2022, 106-107, 132651.	1.0	5
59	Electrochemical Oxidative Sulfonylation of Nâ€Arylamides/Amine with Sodium Sulfinates. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	8
60	Twoâ€Dimensional Metal–Organic Framework Nanosheets: Synthesis and Applications in Electrocatalysis and Photocatalysis. ChemSusChem, 2022, 15, .	3.6	33
61	Advances in Free-Radical Promoted C(sp ³)—C(sp ³) Bond Conversion. Chinese Journal of Organic Chemistry, 2022, 42, 16.	0.6	5
62	Electrochemical Ring-Opening Dicarboxylation of Strained Carbon–Carbon Single Bonds with CO ₂ : Facile Synthesis of Diacids and Derivatization into Polyesters. Journal of the American Chemical Society, 2022, 144, 2062-2068.	6.6	75
63	New insight into electropolymerization of melamine. II: Low onset potential deposition of polymelamine with trace active bromine. Electrochimica Acta, 2022, 410, 139991.	2.6	3
64	Nickel-catalyzed electrochemical carboxylation of unactivated aryl and alkyl halides with CO2. Nature Communications, 2021, 12, 7086.	5.8	71
65	Efficient and eco-friendly oxidative cleavage of C–C bonds of 1,2-diols to ketones: electrochemistry <i>vs</i> thermochemistry. Organic Chemistry Frontiers, 2022, 9, 2664-2670.	2.3	10
66	Electrochemical oxidative N–H/P–H cross-coupling with H ₂ evolution towards the synthesis of tertiary phosphines. Chemical Science, 2022, 13, 3002-3008.	3.7	13
67	Electrochemical Activation of Câ^C Bonds through Mediated Hydrogen Atom Transfer Reactions. ChemSusChem, 2022, 15, .	3.6	15
68	Progress in the Electrochemical Reactions of Sulfonyl Compounds. ChemSusChem, 2022, 15, .	3.6	15
69	Electrochemical Aerobic Oxidative Cleavage of (sp ³)C–C(sp ³)/H Bonds in Alkylarenes. Journal of Organic Chemistry, 2022, 87, 3286-3295.	1.7	8
70	Heterogeneous manganese-oxide-catalyzed successive cleavage and functionalization of alcohols to access amides and nitriles. CheM, 2022, 8, 1906-1927.	5.8	18
71	Electrochemical Enantioselective Nucleophilic α-C(sp ³)–H Alkenylation of 2-Acyl Imidazoles. Journal of the American Chemical Society, 2022, 144, 6964-6971.	6.6	48
72	Electrochemical Desaturative βâ€Acylation of Cyclic <i>N</i> â€Aryl Amines. Angewandte Chemie - International Edition, 2022, 61, .	7.2	51

#	Article	IF	CITATIONS
73	Electrochemical Desaturative βâ€Acylation of Cyclic <i>N</i> â€Aryl Amines. Angewandte Chemie, 2022, 134, .	1.6	8
74	Ru(II) Polypyridyl-Modified TiO ₂ Nanoparticles for Photocatalytic C–C/C–O Bond Cleavage at Room Temperature. ACS Applied Nano Materials, 2022, 5, 948-956.	2.4	9
75	lodine-Mediated Câ∙€ Double Bond Cleavage toward Pyrido[2,1- <i>b</i>]quinazolinones. Organic Letters, 2022, 24, 3286-3290.	2.4	8
76	Flash Synthesis and Continuous Production of C-Arylglycosides in a Flow Electrochemical Reactor. Frontiers in Chemical Engineering, 2022, 4, .	1.3	5
77	Decarbonylative Cycloaddition of 1H-Indene-1,2,3-trione and Norbornene via Rhodium(I)-Catalyzed Carbon–Carbon Bond Cleavage. New Journal of Chemistry, 0, , .	1.4	0
78	Electrochemical 5- <i>exo-dig</i> aza-cyclization of 2-alkynylbenzamides toward 3-hydroxyisoindolinone derivatives. Organic and Biomolecular Chemistry, 2022, 20, 4320-4323.	1.5	4
79	Recent progress in cathodic reduction-enabled organic electrosynthesis: Trends, challenges, and opportunities. EScience, 2022, 2, 243-277.	25.0	67
80	Access to Nitrones from Amines via Electrocatalysis at Room Temperature. Advanced Synthesis and Catalysis, 2022, 364, 1982-1988.	2.1	2
81	Electrochemical Sulfoxidation of Thiols and Alkyl Halides. Journal of Organic Chemistry, 2022, 87, 6942-6950.	1.7	7
82	An approach for the synthesis of 2-aryl-3-sulfonyl substituted quinolines through an electrochemical cascade annulation pathway. Green Chemistry, 2022, 24, 4425-4431.	4.6	16
83	Electrochemical-Promoted Nickel-Catalyzed Reductive Allylation of Aryl Halides. Organic Letters, 2022, 24, 3647-3651.	2.4	20
84	Electrode material promoted dehydrogenative homo-/cross-coupling of weakly activated naphthalenes. Green Synthesis and Catalysis, 2022, , .	3.7	4
85	Recent advances in C–F bond activation of trifluoromethylated carbonyl compounds and derivatives. Organic and Biomolecular Chemistry, 2022, 20, 5365-5376.	1.5	16
86	Nickel-catalyzed decarboxylative cross-coupling of indole-3-acetic acids with aryl bromides by convergent paired electrolysis. Chemical Communications, 2022, 58, 8202-8205.	2.2	21
87	Metal-free hypervalent iodine-promoted tandem carbonyl migration and unactivated C(Ph)–C(Alkyl) bond cleavage for quinolone scaffold synthesis. Chemical Communications, 2022, 58, 8340-8343.	2.2	1
88	Electrochemical formal [3 + 2] cycloaddition of azobenzenes with hexahydro-1,3,5-triazines. Organic Chemistry Frontiers, 2022, 9, 3769-3774.	2.3	8
89	Electrochemical Dearomatizing Spirocyclization of Alkynes with D imethyl 2-Benzylmalonate s to Spiro[4.5]deca-trienones . Journal of Organic Chemistry, 2022, 87, 8697-8708.	1.7	19
90	Chemoselective electrocatalytic hydroboration of alkynes with pinacolborane. Journal of Molecular Structure, 2022, 1266, 133463.	1.8	6

#	Article	IF	CITATIONS
91	Rapid access to organic triflates based on flash generation of unstable sulfonium triflates in flow. Chemical Communications, 2022, 58, 8344-8347.	2.2	8
92	Electrochemical Hydroboration of Carbonyl Compounds. Dalton Transactions, 0, , .	1.6	5
93	Electrosynthesis of <i>ortho</i> â€Amino Aryl Ketones by Aerobic Electrooxidative Cleavage of the C(2)=C(3)/C(2)â^'N Bonds of <i>N</i> â€Boc Indoles. Advanced Synthesis and Catalysis, 2022, 364, 2565-2570.	2.1	5
94	Protocol for the preparation of amorphous manganese oxide and its application as heterogeneous catalyst in the direct synthesis of amides and nitriles. STAR Protocols, 2022, 3, 101564.	0.5	0
95	Electro-/photocatalytic alkene-derived radical cation chemistry: recent advances in synthetic applications. Chemical Society Reviews, 2022, 51, 7206-7237.	18.7	78
96	Chiral Carbon Dots Derived from Serine with Well-Defined Structure and Enantioselective Catalytic Activity. Nano Letters, 2022, 22, 7203-7211.	4.5	28
97	Asymmetric Oxidative Lactonization of Enynyl Boronates. Angewandte Chemie - International Edition, 0, , .	7.2	3
98	Metalâ€Free Electrochemical Carboxylation of Organic Halides in the Presence of Catalytic Amounts of an Organomediator. Angewandte Chemie - International Edition, 2022, 61, .	7.2	36
99	Electrochemical Site-Selective Alkylation of Azobenzenes with (Thio)Xanthenes. Molecules, 2022, 27, 4967.	1.7	4
100	Electrophotochemical Decarboxylative Azidation of Aliphatic Carboxylic Acids. ACS Catalysis, 2022, 12, 10661-10667.	5.5	26
101	Electrocarboxylation of Aryl Epoxides with CO ₂ for the Facile and Selective Synthesis of βâ€Hydroxy Acids. Angewandte Chemie - International Edition, 2022, 61, .	7.2	45
102	Electrochemical Synthesis of Polysubstituted Oxazoles from Ketones and Acetonitrile. Organic Letters, 2022, 24, 5762-5766.	2.4	16
103	Electrochemical vicinal oxyazidation of α-arylvinyl acetates. Beilstein Journal of Organic Chemistry, 0, 18, 1026-1031.	1.3	3
104	An Electrocatalytic Strategy for Dehydrogenative [4 + 2] Cycloaddition over a <scp>Cobaltâ€BasedCatalyst. Chinese Journal of Chemistry, 2022, 40, 2741-2746.</scp>)> 2.6	6
105	Electrochemical Aerobic Oxygenation and Nitrogenation of Cyclic Alkenes via Câ•C Bond Cleavage or Oxygenation and Azidation of Open-Chain Alkenes. Journal of Organic Chemistry, 2022, 87, 11031-11041.	1.7	7
106	Electrocarboxylation of Aryl Epoxides with CO ₂ for the Facile and Selective Synthesis of βâ€Hydroxy Acids. Angewandte Chemie, 2022, 134, .	1.6	10
107	Asymmetric Oxidative Lactonization of Enynyl Boronates. Angewandte Chemie, 0, , .	1.6	0
108	C–C Bond Activation of Cyclopropanes Enabled by Phosphine-Catalyzed <i>In Situ</i> Formation of High-Strain Methylenecycopropane Intermediate. Organic Letters, 2022, 24, 6489-6493.	2.4	5

ARTICLE IF CITATIONS # Cathode enabled high faradaic efficiency: reduction of imines to amines with H₂O as a 109 2.2 3 H-source. Chemical Communications, 2022, 58, 9906-9909. Radical coupling reactions of hydrazines<i>via</i>photochemical and electrochemical strategies. 2.3 Organic Chemistry Frontiers, 2022, 9, 6114-6128. Electrochemically-promoted synthesis of benzo[<i>b</i>]thiophene-1,1-dioxides <i>via</i> strained 111 3.7 12 quaternary spirocyclization. Chemical Science, 2022, 13, 9940-9946. Catalyst-free benzylic C(sp³)â€"H cross-coupling with organotrifluoroborates enabled by electrochemistry. Green Chemistry, 2022, 24, 7883-7888. Electrochemical cyclization of <i>N</i>-cyanamide alkenes with CF₃SO₂Na to access C, <i>N </i>- (bis)trifluoromethylated cyclic amidines and related compounds. Organic Chemistry 113 2.3 4 Frontiers, 2022, 9, 5912-5920. Electrochemically induced Markovnikov-type selective hydro/deuterophosphonylation of electron-rich alkenes. Chemical Communications, 2022, 58, 12094-12097. 2.2 Electrochemical oxidative regio- and stereo-selective thio(seleno)cyanation of enamides and 115 4.6 10 mechanistic insights. Green Chemistry, 2022, 24, 6556-6561. Hypervalent-iodine promoted selective cleavage of C(sp³)–C(sp³) bonds in 2.3 ethers. Organic Chemistry Frontiers, 2022, 9, 5592-5598. Exploiting photoredox catalysis for carbohydrate modification through Câ€"H and Câ€"C bond 117 13.8 18 activation. Nature Reviews Chemistry, 2022, 6, 782-805. Electrochemical Intramolecular Oxidative C(sp3)â⁻H/C(sp3)â⁻H Coupling for Synthesis of 4-quinolones. 118 1.2 Synthesis, 0, , . Metalâ€Free Electrochemical Carboxylation of Organic Halides in the Presence of Catalytic Amounts of 119 1.6 8 an Organomediator. Angewandte Chemie, 2022, 134, . Electrochemical Oxidative C–C Bond Cleavage of Ketones for C–N Bond Formation: A Route to Amides. 1.7 Journal of Organic Chemistry, 2022, 87, 12622-12631. Electrochemical Amidation: Benzoyl Hydrazine/Carbazate and Amine as Coupling Partners. Organic 121 2.4 12 Letters, 2022, 24, 6619-6624. Acidâ€Promoted Carbon arbon Triple Bond Cleavage of Ynones for the Synthesis of Benzo[<i>d</i>]oxazoles/Benzo[<i>d</i>]thiazoles and 1â€Arylethanâ€1â€ones. European Journal of Organic 1.2 Chemistry, 2022, 2022, . 123 Recent Advances in the Electrochemical Functionalization of Isocyanides. Chemical Record, 2023, 23, . 2.9 8 Electrochemical Synthesis of Polysubstituted Sulfonated Pyrazoles via Cascade Intermolecular Condensation, Radical–Radical Cross Coupling Sulfonylation, and Pyrazole Annulation. Journal of 124 14 Organic Chemistry, 2022, 87, 13138-13153. Electrochemical Câ[~]H Oxidation/Conjugate Addition/Cyclization Sequences of 2â€Alkyl Phenols: Oneâ€Pot 125 1.36 Synthesis of 2â€Aminoâ€4<i>H</i>à€chromenes. Asian Journal of Organic Chemistry, 2022, 11, . Easy Access to N-(pyridin-2-yl)benzamides through Electro-oxidative Ring Opening of 2-Arylimidazo[1,2-a]pyridines. Synlett, 0, , .

CITATION REPORT

#	Article	IF	CITATIONS
127	Electro-oxidation induced O–S cross-coupling of quinoxalinones with sodium sulfinates for synthesizing 2-sulfonyloxylated quinoxalines. Chemical Communications, 2022, 58, 12357-12360.	2.2	2
128	Challenges and recent advancements in the transformation of CO ₂ into carboxylic acids: straightforward assembly with homogeneous 3d metals. Chemical Society Reviews, 2022, 51, 9371-9423.	18.7	38
129	Silver-Catalyzed Vinylcarbene Insertion into C–C Bonds of 1,3-Diketones with Vinyl- <i>N</i> -triftosylhydrazones. Organic Letters, 2022, 24, 8136-8141.	2.4	3
130	One-Pot Synthesis of Diaryl 1,2-Diketones via Zn-Mediated Reductive Coupling. Journal of Organic Chemistry, 2022, 87, 14037-14044.	1.7	3
131	Electrochemical <i>N</i> â€Centered Radical Addition/Semipinacol Rearrangement Sequence of Alkenyl Cyclobutanols: Synthesis of βâ€Amino Cyclic Ketones. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	5
132	Heterocycle Synthesis via Decarboxylative Cyclization Methods. Advanced Synthesis and Catalysis, 2022, 364, 3756-3781.	2.1	10
133	The Application of Sulfonyl Hydrazides in Electrosynthesis: A Review of Recent Studies. ACS Omega, 2022, 7, 39531-39561.	1.6	12
134	Electroreductive Ring-Opening Carboxylation of Cycloketone Oxime Esters with Carbon Dioxide. Journal of Organic Chemistry, 2023, 88, 5212-5219.	1.7	8
135	Photoelectrochemical Asymmetric Catalysis Enables Direct and Enantioselective Decarboxylative Cyanation. Journal of the American Chemical Society, 2022, 144, 20201-20206.	6.6	47
136	Electrochemical promoted C H bond chlorination of sulfoxonium ylides. Tetrahedron Letters, 2023, 114, 154244.	0.7	5
137	An electrocatalytic three-component reaction for the synthesis of phosphoroselenoates. Chemical Communications, 2022, 58, 13951-13954.	2.2	0
138	Electrochemical radical-mediated selective C(sp ³)–S bond activation. Chemical Science, 2023, 14, 372-378.	3.7	12
139	Cu-catalyzed enantioselective decarboxylative cyanation <i>via</i> the synergistic merger of photocatalysis and electrochemistry. Chemical Science, 2023, 14, 705-710.	3.7	17
140	Electrocatalytic synthesis: an environmentally benign alternative for radical-mediated aryl/alkenyl C(sp ²)–C(sp ³) cross-coupling reactions. Green Chemistry, 2022, 24, 9373-9401.	4.6	17
141	Electrochemical Oxidation of 3-Aryl-2-cyanothioacrylamides. Russian Journal of General Chemistry, 2022, 92, 2235-2245.	0.3	1
142	A Novel Electrode for Valueâ€Generating Anode Reactions in Water Electrolyzers at Industrial Current Densities. Angewandte Chemie - International Edition, 2023, 62, .	7.2	26
143	Reactions in single-molecule junctions. Nature Reviews Materials, 2023, 8, 165-185.	23.3	20
144	A Novel Electrode for Valueâ€Generating Anode Reactions in Water Electrolyzers at Industrial Current Densities. Angewandte Chemie, 2023, 135,	1.6	4

		CITATION REPORT	
#	Article	IF	CITATIONS
145	Electrophotocatalytic oxygenation of multiple adjacent C–H bonds. Nature, 2023, 614, 275-280). 13.7	44
146	Paired electrochemical C–H bromination of (hetero)arenes with 2-bromoethan-1-ol. Organic Chemistry Frontiers, 2023, 10, 990-995.	2.3	27
147	Electrochemical Oxidative Thiocyanosulfonylation of Aryl Acetylenes. Chinese Journal of Organic Chemistry, 2022, 42, 4275.	0.6	4
148	Electroreductively Induced Radicals for Organic Synthesis. Molecules, 2023, 28, 857.	1.7	9
149	Amino-tetrazoles synthesis from secondary amides via C-C bond nitrogenation. Synlett, 0, , .	1.0	1
150	Electrochemical monofluoroalkylation cyclization of <i>N</i> -arylacrylamides to construct monofluorinated 2-oxindoles. Organic and Biomolecular Chemistry, 2023, 21, 1014-1020.	1.5	12
151	Electrochemical Biorefinery Towards Chemicals Synthesis and Bio-Oil Upgrading from Lignin. Engineering, 2022, , .	3.2	1
152	Highly Selective Transformation of Biomass Derivatives to Valuable Chemicals by Singleâ€Atom Photocatalyst Ni/TiO ₂ . Advanced Materials, 2023, 35, .	11.1	23
153	Transition metal-free electrochemical fluorotrifluoromethylation of Styrenes. Organic Chemistry Frontiers, 2023, 10, 1283-1288.	2.3	3
154	Electrochemical oxidation of styrene to benzaldehyde by discrimination of spin-paired π electrons Chemical Science, 2023, 14, 1679-1686.	3.7	5
155	Electrochemical Direct Formyloxylation of Benzylic C(sp ³)–H with DMF. ACS Susta Chemistry and Engineering, 2023, 11, 1624-1630.	inable 3.2	2
156	The electro-refinery in organics: A new arising concept for valorization of wastes. Current Opinion in Electrochemistry, 2023, 39, 101267.	2.5	3
157	C(sp ³)–H Aerobic Alkenylation of Tetrahydroisoquinolines via Organic Electrosynth Journal of Organic Chemistry, 2023, 88, 6203-6208.	iesis. 1.7	6
158	Electrooxidative Activation of Bâ^'B Bond in B ₂ cat ₂ : Access to <i>gem</i> â€Diborylalkanes via Paired Electrolysis. Angewandte Chemie, 2023, 135, .	1.6	3
159	Electrooxidative Activation of Bâ^'B Bond in B ₂ cat ₂ : Access to <i>gem</i> â€Ðiborylalkanes via Paired Electrolysis. Angewandte Chemie - International Edition, 20)23, 62, . ^{7.2}	11
160	Catalyst-Free Electrochemical Sulfonylation of Organoboronic Acids. Journal of Organic Chemistry 2023, 88, 2296-2305.	1.7	4
161	Integrating Electrochemical CO ₂ Reduction on α-NiS with the Water or Organic Oxidations by Its Electro-Oxidized NiO(OH) Counterpart to an Artificial Photosynthetic Scheme. A Applied Materials & Interfaces, 2023, 15, 8010-8021.	CS 4.0	9
162	Metal-free sulfonylation of quinoxalinones to access 2-sulfonyl-oxylated quinoxalines <i>via</i> oxidative O–S cross coupling. Organic and Biomolecular Chemistry, 2023, 21, 1903-1909.	1.5	0

	CITATION	ITATION REPORT	
#	Article	IF	Citations
163	The future of organic electrochemistry current transfer. Chinese Journal of Catalysis, 2023, 46, 4-10.	6.9	11
164	Photoelectrochemical Cerium Catalysis via Ligand-to-Metal Charge Transfer: A Rising Frontier in Sustainable Organic Synthesis. Synthesis, 0, , .	1.2	1
165	Electricity-Promoted Friedel–Crafts Acylation of Biarylcarboxylic Acids. Journal of Organic Chemistry, 2023, 88, 3794-3801.	1.7	4
166	Electrochemical Dearomative Spirocyclization. Chemistry - an Asian Journal, 2023, 18, .	1.7	15
167	Electrochemically enabled decyanative C(sp ³)–H oxygenation of <i>N</i> -cyanomethylamines to formamides. Organic and Biomolecular Chemistry, 2023, 21, 2917-2921.	1.5	1
168	Transition metal-catalyzed alkynylation reactions <i>via</i> alkynyl carbon–carbon bond cleavage. Organic Chemistry Frontiers, 2023, 10, 2081-2094.	2.3	1
169	Regiodivergent electroreductive defluorinative carboxylation of <i>gem</i> -difluorocyclopropanes. Green Chemistry, 2023, 25, 3095-3102.	4.6	11
170	Electrosynthesis of methyl 2-ureidobenzoates via a C2–C3 bond cleavage of isatins. Tetrahedron, 2023, 137, 133383.	1.0	1
171	Electrochemical electrophilic bromination/spirocyclization of <i>N</i> -benzyl-acrylamides to brominated 2-azaspiro[4.5]decanes. Green Chemistry, 2023, 25, 3543-3548.	4.6	38
172	Paired Oxidative and Reductive Catalysis: Breaking the Potential Barrier of Electrochemical C(sp ³)â^'H Alkenylation**. Angewandte Chemie - International Edition, 2023, 62, .	7.2	15
173	Paired Oxidative and Reductive Catalysis: Breaking the Potential Barrier of Electrochemical C(sp ³)â^'H Alkenylation**. Angewandte Chemie, 2023, 135, .	1.6	0
174	Electrochemical oxidative C(sp ³)–H/O–H cross-coupling for the synthesis of α-acyloxyketones. Organic Chemistry Frontiers, 0, , .	2.3	2
175	Electrophotocatalytic tri- or difluoromethylative cyclization of alkenes. Organic Chemistry Frontiers, 2023, 10, 2482-2490.	2.3	11
176	Unraveling the electrophilic oxygen-mediated mechanism for alcohol electrooxidation on NiO. National Science Review, 2023, 10, .	4.6	11
177	Room Temperature Construction of Vicinal Amino Alcohols via Electroreductive Cross-Coupling of <i>N</i> -Heteroarenes and Carbonyls. Journal of the American Chemical Society, 2023, 145, 10967-10973.	6.6	15
180	Aromatic C–C Bond Cleavage in a Curved π-System of Aminocorannulene. Organic Letters, 2023, 25, 3972-3977	2.4	2
239	Electrochemical decarboxylative alkylation of β-ketoacids with phenol derivatives. Chemical Communications, 2024, 60, 1329-1332.	2.2	0