Staphylococcus epidermidis protease EcpA can be a del microbiome in atopic dermatitis

Journal of Allergy and Clinical Immunology 147, 955-966.e16 DOI: 10.1016/j.jaci.2020.06.024

Citation Report

#	Article	IF	CITATIONS
1	Molecular epidemiology of Staphylococcus aureus in African children from rural and urban communities with atopic dermatitis. BMC Infectious Diseases, 2021, 21, 348.	1.3	3
2	Mechanisms of microbe-immune system dialogue within the skin. Genes and Immunity, 2021, 22, 276-288.	2.2	33
3	Novel mechanisms of microbial crosstalk with skin innate immunity. Experimental Dermatology, 2021, 30, 1484-1495.	1.4	6
4	Antimicrobial peptides and proteins: Interaction with the skin microbiota. Experimental Dermatology, 2021, 30, 1496-1508.	1.4	15
5	The Influence of Microbiome Dysbiosis and Bacterial Biofilms on Epidermal Barrier Function in Atopic Dermatitis—An Update. International Journal of Molecular Sciences, 2021, 22, 8403.	1.8	16
6	Continuous clinical improvement of mildâ€toâ€moderate seborrheic dermatitis and rebalancing of the scalp microbiome using a selenium disulfide–based shampoo after an initial treatment with ketoconazole. Journal of Cosmetic Dermatology, 2022, 21, 2215-2225.	0.8	12
7	Adaptation of Staphylococcus aureus to the Human Skin Environment Identified Using an ex vivo Tissue Model. Frontiers in Microbiology, 2021, 12, 728989.	1.5	11
8	The Skin Microbiome of Patients With Atopic Dermatitis Normalizes Gradually During Treatment. Frontiers in Cellular and Infection Microbiology, 2021, 11, 720674.	1.8	37
9	Mechanisms for control of skin immune function by the microbiome. Current Opinion in Immunology, 2021, 72, 324-330.	2.4	24
11	Staphylococcus epidermidis—Skin friend or foe?. PLoS Pathogens, 2020, 16, e1009026.	2.1	79
12	State of Residency: Microbial Strain Diversity inÂthe Skin. Journal of Investigative Dermatology, 2022, 142, 1260-1264.	0.3	8
13	The Antibiofilm Nanosystems for Improved Infection Inhibition of Microbes in Skin. Molecules, 2021, 26, 6392.	1.7	23
15	Secretory Proteases of the Human Skin Microbiome. Infection and Immunity, 2022, 90, IAI0039721.	1.0	8
16	Association between barrier impairment and skin microbiota in atopic dermatitis from a global perspective: Unmet needs and open questions. Journal of Allergy and Clinical Immunology, 2021, 148, 1387-1393.	1.5	18
17	Advances in Microbiome-Derived Solutions and Methodologies Are Founding a New Era in Skin Health and Care. Pathogens, 2022, 11, 121.	1.2	13
18	Skin barrier defects in atopic dermatitis: From old idea to new opportunity. Allergology International, 2022, 71, 3-13.	1.4	30
19	Look Who's Talking: Host and Pathogen Drivers of Staphylococcus epidermidis Virulence in Neonatal Sepsis. International Journal of Molecular Sciences, 2022, 23, 860.	1.8	15
20	Microbial dysbiosis in a mouse model of atopic dermatitis mimics shifts in human microbiome and correlates with the key proâ€inflammatory cytokines ILâ€4, ILâ€33 and TSLP. Journal of the European Academy of Dermatology and Venereology, 2022, 36, 705-716.	1.3	6

CITATION REPORT

#	Article	IF	CITATIONS
21	Atopic dermatitis: molecular, cellular, and clinical aspects. Molecular Biology Reports, 2022, 49, 3333-3348.	1.0	10
22	The Nature and Functions of Vertebrate Skin Microbiota. , 2022, , 243-265.		0
23	Temporal and Spatial Variation of the Skin-Associated Bacteria from Healthy Participants and Atopic Dermatitis Patients. MSphere, 2022, 7, e0091721.	1.3	5
24	Model-Based Meta-Analysis to Optimize Staphylococcus aureus‒Targeted Therapies forÂAtopic Dermatitis. JID Innovations, 2022, 2, 100110.	1.2	5
25	Skin and nasal colonization of coagulase-negative staphylococci are associated with atopic dermatitis among South African toddlers. PLoS ONE, 2022, 17, e0265326.	1.1	6
26	Interspecies Regulation Between Staphylococcus caprae and Staphylococcus aureus Colonized on Healed Skin After Injury. Frontiers in Microbiology, 2022, 13, 818398.	1.5	3
27	Cytokine-Mediated Crosstalk Between Keratinocytes and T Cells in Atopic Dermatitis. Frontiers in Immunology, 2022, 13, 801579.	2.2	23
28	Human skin microbiota in health and disease. Apmis, 2022, 130, 706-718.	0.9	15
29	Multi-omics-based identification of atopic dermatitis target genes and their potential associations with metabolites and miRNAs American Journal of Translational Research (discontinued), 2021, 13, 13697-13709.	0.0	0
30	Staphylococcus epidermidis-Derived Protease Esp Mediates Proteolytic Activation of Pro‒IL-1β in Human Keratinocytes. Journal of Investigative Dermatology, 2022, 142, 2756-2765.e8.	0.3	4
31	Targeting the cutaneous microbiota in atopic dermatitis: â€~AÂnew hope' or â€~attack of the CoNS'?. Cli and Translational Medicine, 2022, 12, e865.	nical 1.7	3
32	The Staphylococcus epidermidis Transcriptional Profile During Carriage. Frontiers in Microbiology, 2022, 13, 896311.	1.5	5
33	Microbiota and maintenance of skin barrier function. Science, 2022, 376, 940-945.	6.0	135
34	The Ubiquitous Human Skin Commensal Staphylococcus hominis Protects against Opportunistic Pathogens. MBio, 2022, 13, .	1.8	24
35	Symbiotic microorganisms: prospects for treating atopic dermatitis. Expert Opinion on Biological Therapy, 2022, 22, 911-927.	1.4	1
36	Claudin-1 Mediated Tight Junction Dysfunction as a Contributor to Atopic March. Frontiers in Immunology, 0, 13, .	2.2	2
37	The Commensal Staphylococcus warneri Makes Peptide Inhibitors of MRSA Quorum Sensing that Protect Skin from Atopic or Necrotic Damage. Journal of Investigative Dermatology, 2022, 142, 3349-3352.e5.	0.3	9
38	Modeling an Optimal 3D Skin-on-Chip within Microfluidic Devices for Pharmacological Studies. Pharmaceutics, 2022, 14, 1417.	2.0	11

CITATION REPORT

#	Article	IF	CITATIONS
39	study on the efficacy of Staphyloccus aureus biofilm formation in atopic dermatitis severity. International Journal of Health Sciences, 0, , 3111-3118.	0.0	0
40	The In Vitro Antimicrobial and Antibiofilm Activities of Lysozyme against Gram-Positive Bacteria. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-10.	0.7	1
41	The Skin Microbiome in Cutaneous T-Cell Lymphomas (CTCL)—A Narrative Review. Pathogens, 2022, 11, 935.	1.2	5
42	Sharing is caring? Skin microbiome insights into staphylococci in patients with atopic dermatitis and caregivers. Journal of Allergy and Clinical Immunology, 2022, 150, 793-795.	1.5	2
43	Identification and characterization of the pathogenic potential of phenol-soluble modulin toxins in the mouse commensal Staphylococcus xylosus. Frontiers in Immunology, 0, 13, .	2.2	3
44	Staphylococcus epidermidis and its dual lifestyle in skin health and infection. Nature Reviews Microbiology, 2023, 21, 97-111.	13.6	47
45	Skin Commensal Bacteria Modulates the Immune Balance of Mice to Alleviate Atopic Dermatitis-Induced Damage. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-8.	0.5	0
46	Controlling skin microbiome as a new bacteriotherapy for inflammatory skin diseases. Inflammation and Regeneration, 2022, 42, .	1.5	19
47	Methicillin-resistant and methicillin-sensitive Staphylococcus aureus isolates from skin and nares of Brazilian children with atopic dermatitis demonstrate high level of clonal diversity. PLoS ONE, 2022, 17, e0276960.	1.1	3
48	Strains to go: interactions of the skin microbiome beyond its species. Current Opinion in Microbiology, 2022, 70, 102222.	2.3	3
49	Transcriptome Mining to Identify Molecular Markers for the Diagnosis of Staphylococcus epidermidis Bloodstream Infections. Antibiotics, 2022, 11, 1596.	1.5	1
50	Novel insights into atopic dermatitis. Journal of Allergy and Clinical Immunology, 2023, 151, 1145-1154.	1.5	29
51	The influence of the commensal skin bacterium <i>Staphylococcus epidermidis</i> on the epidermal barrier and inflammation: Implications for atopic dermatitis. Experimental Dermatology, 2023, 32, 555-561.	1.4	6
52	Host-microbiome interactions in the holobiome of atopic dermatitis. Journal of Allergy and Clinical Immunology, 2023, 151, 1236-1238.	1.5	2
53	No more tears from surgical site infections in interventional pain management. Korean Journal of Pain, 2023, 36, 11-50.	0.8	2
54	Microbial derived antimicrobial peptides as potential therapeutics in atopic dermatitis. Frontiers in Immunology, 0, 14, .	2.2	4
55	Autoantigens in atopic dermatitis: The characterization of autoantigens and their diagnostic value. , 2023, , 37-48.		0
56	The epidermal lipid barrier in microbiome–skin interaction. Trends in Microbiology, 2023, 31, 723-734.	3.5	7

		CITATION REPORT		
#	Article		IF	CITATIONS
57	Evolving approaches to profiling the microbiome in skin disease. Frontiers in Immunolo	ogy, 0, 14, .	2.2	4
58	Dupilumab but not cyclosporine treatment shifts the microbiome toward a healthy skir patients with moderateâ€toâ€severe atopic dermatitis. Allergy: European Journal of All Immunology, 2023, 78, 2290-2300.	n flora in ergy and Clinical	2.7	5
59	Pathogenic role of the staphylococcal accessory gene regulator quorum sensing syster dermatitis. Frontiers in Cellular and Infection Microbiology, 0, 13, .	n in atopic	1.8	4
84	The Dynamics of Skin Microbiome: Association of Microbiota with Skin Disorders and T Interventions. , 2023, , 187-204.	Therapeutic		0