Genetically modified organisms and food security in Sodiscourse

GM Crops and Food 12, 25-35

DOI: 10.1080/21645698.2020.1794489

Citation Report

#	Article	IF	CITATIONS
1	Food safety, food security and genetically modified organisms in Africa: a current perspective. Biotechnology and Genetic Engineering Reviews, 2021, 37, 30-63.	2.4	26
2	Global Regulation of Genetically Modified Crops Amid the Gene Edited Crop Boom – A Review. Frontiers in Plant Science, 2021, 12, 630396.	1.7	188
3	Future demands of the poultry industry: will we meet our commitments sustainably in developed and developing economies?. World's Poultry Science Journal, 2021, 77, 267-278.	1.4	27
4	Factors affecting food security of children from corn farming households in cagayan valley, phillipines. Plant Science Today, 2021, 8, .	0.4	1
5	In planta removal of nptII selectable marker gene from transgenic tobacco plants using CRISPR/Cas9 system. Plant Gene, 2021, 26, 100288.	1.4	3
6	Economic and ecosystem impacts of GM maize in South Africa. Global Food Security, 2021, 29, 100544.	4.0	14
7	Ethical and Human Rights Dilemmas During Disasters: Emerging Findings from Tropical Cyclone Idai. Sustainable Development Goals Series, 2021, , 187-203.	0.2	1
8	Microbiome engineering and plant biostimulants for sustainable crop improvement and mitigation of biotic and abiotic stresses. , 2022, 2, 1.		41
9	Improving Crop Productivity and Ensuring Food Security through the Adoption of Genetically Modified Crops in Sub-Saharan Africa. Agronomy, 2022, 12, 439.	1.3	19
11	Host plant resistance for fall armyworm management in maize: relevance, status and prospects in Africa and Asia. Theoretical and Applied Genetics, 2022, 135, 3897-3916.	1.8	29
12	The development of RPA and CRISPR-Cas12a based immunoassay strip for sensitive detection of genetically modified crops. Food Control, 2022, 139, 109048.	2.8	10
13	Impacts of growing and utilising genetically modified crops and forages – a New Zealand perspective. New Zealand Journal of Agricultural Research, 2023, 66, 389-418.	0.9	8
14	Global maize production, consumption and trade: trends and R&D implications. Food Security, 2022, 14, 1295-1319.	2.4	200
15	Institutional and policy bottlenecks to IPM. Current Opinion in Insect Science, 2022, 52, 100946.	2.2	6
16	Plant-Based Vaccines Against COVID-19 for Massive Vaccination in Africa. Frontiers in Drug Delivery, 0, 2, .	0.4	2
17	Management of Pests Using Genetic Tools in Africa. , 2022, , 303-326.		1
18	Mechanisms and Strategies of Plant Microbiome Interactions to Mitigate Abiotic Stresses. Agronomy, 2022, 12, 2069.	1.3	42
19	Chapter Seven: Norms, Ethics, Food and Nationalism. , 2022, , 177-205.		O

#	Article	IF	CITATIONS
20	Are genetically modified and genome-edited crops viable strategies for climate-change adaptation among smallholder farmers?. Current Opinion in Environmental Sustainability, 2022, 58, 101216.	3.1	3
21	Intended and unintended consequences of genetically modified crops – myth, fact and/or manageable outcomes?. New Zealand Journal of Agricultural Research, 2023, 66, 519-619.	0.9	10
22	Rapid detection of genetically modified products based on CRISPR-Cas12a combined with recombinase polymerase amplification. Current Research in Food Science, 2022, , .	2.7	0
24	Cisgenesis: A Promising Alternative Crop Improvement Technology for Biodiversity, Environment and Ecosystem Risks Associated with Transgenics. Concepts and Strategies in Plant Sciences, 2023, , 31-42.	0.6	0
25	Consumer Attitude towards Genetically Modified Foods in Iran: Application of Three-Dimensional Model of Corporate Social Responsibility. Foods, 2023, 12, 1553.	1.9	1
29	Biofortification versus diversification to fight micronutrient deficiencies: an interdisciplinary review. Food Security, 0 , , .	2.4	0
30	Genetically Modified Food: Potentiality for Food and Nutritional Security in Saudi Arabia., 2024,, 359-392.		0
32	A review on regulatory aspects, challenges and public perception in acceptance of genetically modified foods. Food Science and Biotechnology, 2024, 33, 791-804.	1.2	0
33	The potential of soil microbiomes in alleviating climate change–associated stresses on crop plants. , 2024, , 81-111.		0