Arsenic in Latin America: New findings on source, mobi environments in 20 countries based on decadal research

Critical Reviews in Environmental Science and Technology 51, 1727-1865

DOI: 10.1080/10643389.2020.1770527

Citation Report

#	Article	IF	CITATIONS
1	Selective removal of arsenic in water: A critical review. Environmental Pollution, 2021, 268, 115668.	7.5	117
2	Advanced application of nano-technological and biological processes as well as mitigation options for arsenic removal. Journal of Hazardous Materials, 2021, 405, 123885.	12.4	53
3	Geochemical mechanisms of natural arsenic mobility in the hydrogeologic system of Lower Katari Basin, Bolivian Altiplano. Journal of Hydrology, 2021, 594, 125778.	5.4	16
4	Thiourea supplementation mediated reduction of grain arsenic in rice (Oryza sativa L.) cultivars: A two year field study. Journal of Hazardous Materials, 2021, 407, 124368.	12.4	28
5	Surface chemistry of bovine serum albumin with hematite nanoparticles and its effect on arsenate adsorption. Environmental Chemistry, 2021, , .	1.5	1
6	Spatial distribution, occurrence, and health risk assessment of nitrate, fluoride, and arsenic in Bam groundwater resource, Iran. Groundwater for Sustainable Development, 2021, 12, 100543.	4.6	51
7	Potential modification of groundwater arsenic removal filter commonly used in Nepal: A review. Groundwater for Sustainable Development, 2021, 12, 100549.	4.6	13
8	Distribution of Groundwater Arsenic in Uruguay Using Hybrid Machine Learning and Expert System Approaches. Water (Switzerland), 2021, 13, 527.	2.7	10
9	Unraveling roles of dissolved organic matter in high arsenic groundwater based on molecular and optical signatures. Journal of Hazardous Materials, 2021, 406, 124702.	12.4	44
10	Phytoextraction of arsenic using a weed plant <i>Calotropis procera</i> from contaminated water and soil: growth and biochemical response. International Journal of Phytoremediation, 2021, 23, 1310-1318.	3.1	11
11	Small-scale membrane-based arsenic removal for decentralized applications–Developing a conceptual approach for future utilization. Water Research, 2021, 196, 116978.	11.3	23
12	Assessment of arsenic and its associated health risks due to mining activities in parts of North-central Nigeria: Probabilistic approach using Monte Carlo. Journal of Hazardous Materials, 2021, 412, 125262.	12.4	51
13	Fast and effective arsenic removal from aqueous solutions by a novel low-cost eggshell byproduct. Science of the Total Environment, 2021, 783, 147022.	8.0	10
14	Seven potential sources of arsenic pollution in Latin America and their environmental and health impacts. Science of the Total Environment, 2021, 780, 146274.	8.0	97
15	Naturally occurring potentially toxic elements in groundwater from the volcanic landscape around Mount Meru, Arusha, Tanzania and their potential health hazard. Science of the Total Environment, 2022, 807, 150487.	8.0	22
16	Sorption of arsenate(âÞto naturally occurring secondary iron minerals formed at different conditions: The relationship between sorption behavior and surface structure. Chemosphere, 2021, 285, 131525.	8.2	10
17	Arsenic contamination, impact and mitigation strategies in rice agro-environment: An inclusive insight. Science of the Total Environment, 2021, 800, 149477.	8.0	47
18	Arsénico y flúor en agua subterránea de Chihuahua: su origen, enriquecimiento, y tratamientos posibles. TECNOCIENCIA (México), 2021, 15, 95-108.	0.2	3

#	Article	IF	CITATIONS
19	A Critical Evaluation of the Role of Geotectonics in Groundwater Arsenic Contamination. Springer Natural Hazards, 2021, , 201-222.	0.3	1
20	Arsenic and selenium in the plant-soil-human ecosystem: CREST publications during 2018–2021. Critical Reviews in Environmental Science and Technology, 2022, 52, 3567-3572.	12.8	6
21	The role of various ameliorants on geochemical arsenic distribution and CO2-carbon efflux under paddy soil conditions. Environmental Geochemistry and Health, 2023, 45, 507-523.	3.4	12
22	Evaluation of the Acute Effects of Arsenic on Adults of the Neotropical Native Fish <i>Cnesterodon decemmaculatus</i> Using a Set of Biomarkers. Environmental Toxicology and Chemistry, 2022, 41, 1246-1259.	4. 3	2
23	Arsenic contamination, induced symptoms, and health risk assessment in groundwater of Lahore, Pakistan. Environmental Science and Pollution Research, 2022, 29, 49796-49807.	5 . 3	11
24	The moral economy of defence of territory and the political economy of extractivism in the Polochic valley, Guatemala. Journal of Agrarian Change, 2022, 22, 740-765.	1.8	0
25	Humic substances stimulate initial growth and reduce arsenic stress in <i>Corymbia citriodora</i> seedlings. Bioremediation Journal, 2023, 27, 273-280.	2.0	2
26	Exogenously-applied L-glutamic acid protects photosynthetic functions and enhances arsenic tolerance through increased nitrogen assimilation and antioxidant capacity in rice (Oryza sativa L.). Environmental Pollution, 2022, 301, 119008.	7.5	20
27	Arsenic(III) and Arsenic(V) Removal from Water Sources by Molecularly Imprinted Polymers (MIPs): A Mini Review of Recent Developments. Sustainability, 2022, 14, 5222.	3.2	14
28	A Participatory Science Approach to Evaluating Factors Associated with the Occurrence of Metals and PFAS in Guatemala City Tap Water. International Journal of Environmental Research and Public Health, 2022, 19, 6004.	2.6	1
29	Occurrence and behavior of arsenic in groundwater-aquifer system of irrigated areas. Science of the Total Environment, 2022, 838, 155991.	8.0	5
30	Nrf2/Keap1 pathway in countering arsenic-induced oxidative stress in mice after chronic exposure at environmentally-relevant concentrations. Chemosphere, 2022, 303, 135256.	8.2	11
31	Arsenic Exposure via Contaminated Water and Food Sources. Water (Switzerland), 2022, 14, 1884.	2.7	19
32	Arsenic contents, speciation and bioaccessibility in rice grains from China: Regional and variety differences. Journal of Hazardous Materials, 2022, 437, 129431.	12.4	14
33	Concentrations of arsenic, cadmium, and lead in herbal infusion tea bags marketed in Tacna, Peru. Environmental Monitoring and Assessment, 2022, 194, .	2.7	2
34	The Enhanced Stability of Arsenic Coprecipitated with Magnetite during Aging: An XAS Investigation. Industrial & Samp; Engineering Chemistry Research, 2022, 61, 13154-13167.	3.7	5
35	Impact of socioeconomic factors on households' willingness to pay for arsenic-free safe drinking water - A case study of Bihar, India. Groundwater for Sustainable Development, 2022, 19, 100837.	4.6	3
36	Role of tectonics and climate on elevated arsenic in fluvial systems: Insights from surface water and sediments along regional transects of Chile. Environmental Pollution, 2022, 314, 120151.	7.5	8

3

#	Article	IF	Citations
38	Arsenic removal from water and soils using pristine and modified biochars. Biochar, 2022, 4, .	12.6	30
39	Selenium Increased Arsenic Accumulation by Upregulating the Expression of Genes Responsible for Arsenic Reduction, Translocation, and Sequestration in Arsenic Hyperaccumulator <i>Pteris vittata</i> . Environmental Science & Expression of Genes Responsible for Arsenic Reduction, Translocation, and Sequestration in Arsenic Hyperaccumulator <i>Pteris vittata</i> . Environmental Science & Pteris Responsible for Arsenic Responsible for Arsen	10.0	6
40	Using fuzzy cognitive maps to promote nature-based solutions for water quality improvement in developing-country communities. Journal of Cleaner Production, 2022, 377, 134246.	9.3	13
41	Evaluation of surface water quality in basins of the Chilean Altiplano-Puna and implications for water treatment and monitoring. Environmental Monitoring and Assessment, 2022, 194, .	2.7	1
42	Ca Minerals and Oral Bioavailability of Pb, Cd, and As from Indoor Dust in Mice: Mechanisms and Health Implications. Environmental Health Perspectives, 2022, 130, .	6.0	8
43	Spatial distribution and source identification of metal contaminants in the surface soil of Matehuala, Mexico based on positive matrix factorization model and GIS techniques. Frontiers in Soil Science, 0, 2, .	2.2	7
44	A Comprehensive Review of the Latest Advancements in Controlling Arsenic Contaminants in Groundwater. Water (Switzerland), 2023, 15, 478.	2.7	26
45	Heavy metal removal by the photosynthetic microbial biomat found within shallow unit process open water constructed wetlands. Science of the Total Environment, 2023, 876, 162478.	8.0	6
46	Assessing and Understanding Arsenic Contamination in Agricultural Soils and Lake Sediments from Papallacta Rural Parish, Northeastern Ecuador, via Ecotoxicology Factors, for Environmental Embasement. Sustainability, 2023, 15, 3951.	3.2	7
47	Arsenic Contamination in Groundwater: Geochemical Basis of Treatment Technologies. ACS Environmental Au, 2023, 3, 135-152.	7.0	8
48	Potentially Toxic Elements in Pharmaceutical Industrial Effluents: A Review on Risk Assessment, Treatment, and Management for Human Health. Sustainability, 2023, 15, 6974.	3.2	5
49	Biological and green remediation of heavy metal contaminated water and soils: A state-of-the-art review. Chemosphere, 2023, 332, 138861.	8.2	34
50	Increased mobilization of geogenic arsenic by anthropogenic activities: The Brazilian experience in mining and agricultural areas. Current Opinion in Environmental Science and Health, 2023, 33, 100472.	4.1	2
51	Environmental fate and ecological impact of the potentially toxic elements from the geothermal springs. Environmental Geochemistry and Health, 2023, 45, 6287-6303.	3.4	1
52	A mini-review on arsenic remediation techniques from water and future trends. Water Science and Technology, 2023, 87, 3108-3123.	2.5	2
53	Organic matter degradation and arsenic enrichment in different floodplain aquifer systems along the middle reaches of Yangtze River: A thermodynamic analysis. Water Research, 2023, 239, 120072.	11.3	3
54	Genotoxicity and mutagenicity in blood and drinking water induced by arsenic in an impacted gold mining region in Colombia. Environmental Research, 2023, 233, 116229.	7.5	2
55	Mitigating effect of various phosphorus sources on arsenic toxicity in anaerobic conditions for rice and aerobic conditions for sunflower and maize plants. Pedosphere, 2023, , .	4.0	2

#	Article	IF	CITATIONS
56	An appraisal of the principal concerns and controlling factors for Arsenic contamination in Chile. Scientific Reports, 2023, 13, .	3.3	4
57	A preliminary discussion on aÂframework for health geological survey and evaluation. Applied Geochemistry, 2023, 155, 105738.	3.0	1
58	Magnesium/Silica/Lanthanum@Activated Carbon for the Remediation of As(III) from Water. Environments - MDPI, 2023, 10, 171.	3.3	1
59	Development of methylene blue imprinted silica for detecting arsenic ions in aqueous solution. Environmental Engineering Research, O, , .	2.5	0
60	Review and Analysis: Fate of Arsenic Applied to Canal Shipping Lane Vegetation and United States Military Base Grounds in the Panama Canal Zone. Open Journal of Soil Science, 2023, 13, 391-413.	0.8	0
61	Environmental study of the potentially harmful elements (PHEs) in talaga bodas geothermal field, Indonesia. AIP Conference Proceedings, 2023, , .	0.4	0
62	Photo driven homogeneous advanced oxidation coupled to adsorption process for an effective arsenic removal from drinking water. Journal of Environmental Management, 2024, 349, 119568.	7.8	0
63	Endophytic Enterobacter sp. YG-14 mediated arsenic mobilization through siderophore and its role in enhancing phytostabilization. Journal of Hazardous Materials, 2024, 465, 133206.	12.4	0
64	Arsenic and adipose tissue: an unexplored pathway for toxicity and metabolic dysfunction. Environmental Science and Pollution Research, 2024, 31, 8291-8311.	5.3	0
65	Microbial consortia-mediated arsenic bioremediation in agricultural soils: Current status, challenges, and solutions. Science of the Total Environment, 2024, 917, 170297.	8.0	0
66	Sustainable water management in rice cultivation reduces arsenic contamination, increases productivity, microbial molecular response, and profitability. Journal of Hazardous Materials, 2024, 466, 133610.	12.4	2
67	Worldwide Distribution, Health Risk, Treatment Technology, and Development Tendency of Geogenic High-Arsenic Groundwater. Water (Switzerland), 2024, 16, 478.	2.7	0
68	Adsorption methods for arsenic removal in water bodies: a critical evaluation of effectiveness and limitations. Frontiers in Water, 0, 6, .	2.3	0
69	Arsenic in a Karstic Paddy Soil with a High Geochemical Background in Guangxi, China: Its Bioavailability and Controlling Factors. Applied Sciences (Switzerland), 2024, 14, 1400.	2.5	0
70	Simultaneous removal of fluoride and arsenic from drinking groundwater using limestones from BajÃo Guanajuatense, Mexico. Arabian Journal of Geosciences, 2024, 17, .	1.3	0