Imaging-based crack detection on concrete surfaces usi

Structural Health Monitoring 20, 484-499

DOI: 10.1177/1475921720938486

Citation Report

#	Article	IF	CITATIONS
1	Image Enhanced Mask R-CNN: A Deep Learning Pipeline with New Evaluation Measures for Wind Turbine Blade Defect Detection and Classification. Journal of Imaging, 2021, 7, 46.	1.7	26
2	A semi-supervised self-training method to develop assistive intelligence for segmenting multiclass bridge elements from inspection videos. Structural Health Monitoring, 2022, 21, 835-852.	4.3	12
3	Structural Crack Detection from Benchmark Data Sets Using Pruned Fully Convolutional Networks. Journal of Structural Engineering, 2021, 147, .	1.7	24
4	Applications of Deep Learning in Intelligent Construction. Structural Integrity, 2022, , 227-245.	0.8	5
5	Infrastructure BIM Platform for Lifecycle Management. Applied Sciences (Switzerland), 2021, 11, 10310.	1.3	12
6	Crack detection of concrete structures using deep convolutional neural networks optimized by enhanced chicken swarm algorithm. Structural Health Monitoring, 2022, 21, 2244-2263.	4.3	78
7	Automatic detection method of tunnel lining multiâ€defects via an enhanced You Only Look Once network. Computer-Aided Civil and Infrastructure Engineering, 2022, 37, 762-780.	6.3	89
8	Bibliometric Analysis and Review of Deep Learning-Based Crack Detection Literature Published between 2010 and 2022. Buildings, 2022, 12, 432.	1.4	19
9	Automated bridge crack evaluation through deep super resolution network-based hybrid image matching. Automation in Construction, 2022, 137, 104229.	4.8	18
10	Applications of computer vision-based structural health monitoring and condition assessment in future smart cities., 2022, , 193-221.		6
11	Automatic detection of defects in concrete structures based on deep learning. Structures, 2022, 43, 192-199.	1.7	13
12	Autonomous health assessment of civil infrastructure using deep learning and smart devices. Automation in Construction, 2022, 141, 104396.	4.8	13
13	Automatic pixel-level detection method for concrete crack with channel-spatial attention convolution neural network. Structural Health Monitoring, 2023, 22, 1460-1477.	4.3	4
14	3D reconstruction of concrete defects using optical laser triangulation and modified spacetime analysis. Automation in Construction, 2022, 142, 104469.	4.8	14
15	Two-stage method based on the you only look once framework and image segmentation for crack detection in concrete structures. Architecture, Structures and Construction, 2023, 3, 429-446.	0.7	7
16	Crack Detection and Localization based on Spatio-Temporal Data using Residual Networks. , 2022, , .		1
17	Intelligent construction for the transportation infrastructure: a review. , $0,$, .		1
18	Artificial intelligence in civil infrastructure health monitoring—Historical perspectives, current trends, and future visions. Frontiers in Built Environment, 0, 8, .	1.2	5

#	Article	IF	CITATIONS
19	Review on computer vision-based crack detection and quantification methodologies for civil structures. Construction and Building Materials, 2022, 356, 129238.	3.2	37
20	Crack detection based on deep learning: a method for evaluating the object detection networks considering the random fractal of crack. Structural Health Monitoring, 2023, 22, 2547-2564.	4.3	1
21	An Efficient Method for Detecting Asphalt Pavement Cracks and Sealed Cracks Based on a Deep Data-Driven Model. Applied Sciences (Switzerland), 2022, 12, 10089.	1.3	2
22	Artificial intelligence-based visual inspection system for structural health monitoring of cultural heritage. Journal of Civil Structural Health Monitoring, 2024, 14, 103-120.	2.0	9
23	Semi-supervised learning-based point cloud network for segmentation of 3D tunnel scenes. Automation in Construction, 2023, 146, 104668.	4.8	7
24	The application of deep learning in bridge health monitoring: a literature review. Advances in Bridge Engineering, 2022, 3, .	0.8	10
25	A deep learning semantic segmentation network with attention mechanism for concrete crack detection. Structural Health Monitoring, 2023, 22, 3006-3026.	4.3	7
26	A lightweight deep learning network based on knowledge distillation for applications of efficient crack segmentation on embedded devices. Structural Health Monitoring, 2023, 22, 3027-3046.	4.3	4
27	Wind Turbine Crack Inspection Using a Quadrotor With Image Motion Blur Avoided. IEEE Robotics and Automation Letters, 2023, 8, 1069-1076.	3.3	2
28	Bolt Positioning Detection Based on Improved YOLOv5 for Bridge Structural Health Monitoring. Sensors, 2023, 23, 396.	2.1	3
29	Domain adversarial training for classification of cracking in images of concrete surfaces. , 2022, 1 , .		4
30	Vision-based concrete crack detection using deep learning-based models. Asian Journal of Civil Engineering, 0, , .	0.8	1
31	Toward High-Precision Crack Detection in Concrete Bridges Using Deep Learning. Journal of Performance of Constructed Facilities, 2023, 37, .	1.0	2
32	Real-time tunnel lining crack detection based on an improved You Only Look Once version X algorithm. Georisk, 2023, 17, 181-195.	2.6	4
33	Leveraging Saliency in Single-Stage Multi-Label Concrete Defect Detection Using Unmanned Aerial Vehicle Imagery. Remote Sensing, 2023, 15, 1218.	1.8	3
34	Viaduct and Bridge Structural Analysis and Inspection through an App for Immersive Remote Learning. Electronics (Switzerland), 2023, 12, 1220.	1.8	0
35	Synthesized Evaluation of Reinforced Concrete Bridge Defects, Their Non-Destructive Inspection and Analysis Methods: A Systematic Review and Bibliometric Analysis of the Past Three Decades. Buildings, 2023, 13, 800.	1.4	6
36	Automatic classification and isolation of cracks on masonry surfaces using deep transfer learning and semantic segmentation. Journal of Building Pathology and Rehabilitation, 2023, 8, .	0.7	3

#	Article	IF	CITATIONS
37	Surface Defect Detection of Hot Rolled Steel Based on Attention Mechanism and Dilated Convolution for Industrial Robots. Electronics (Switzerland), 2023, 12, 1856.	1.8	1
38	Research on anti-interference detection of 3D-printed ceramics surface defects based on deep learning. Ceramics International, 2023, 49, 22479-22491.	2.3	2